Abstract
Recent advancements in Li and Li-ion based energy storage resulted in development of novel electrode materials for higher energy density which are finding their applications in transportation. There appears to be a limitation in improvement of specific energy of the system based solely on design of material compositions for multivalent intercalation compounds. In addition, higher energy stored by the system implies need for addressing safety concerns especially when it comes to large automotive battery packs. New approaches for improvement of both energy density and safety of batteries are emerging, where multifunctionality of the materials and/or architectures is utilized. This article presents a review for such approaches from multifunctional current collectors to design of batteries capable of supporting mechanical loads and thus possessing ability to be used as a structural component.
Original language | English |
---|---|
Article number | 102747 |
Journal | Journal of Energy Storage |
Volume | 40 |
DOIs | |
State | Published - Aug 2021 |
Funding
This research at Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725 , was sponsored by the Vehicle Technologies Program for the Office of Energy Efficiency and Renewable Energy and by the Advanced Research Projects Agency - Energy (ARPA-e) of the U.S. Department of Energy. The Swedish strategic innovation program SIP LIGHTer (funding provided by VNNOVA , the Swedish Energy Agency and Formas ) is also acknowledged. Notice: This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy . The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan ( http://energy.gov/downloads/doe-public-access-plan ). Notice: This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).This research at Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725, was sponsored by the Vehicle Technologies Program for the Office of Energy Efficiency and Renewable Energy and by the Advanced Research Projects Agency - Energy (ARPA-e) of the U.S. Department of Energy. The Swedish strategic innovation program SIP LIGHTer (funding provided by VNNOVA, the Swedish Energy Agency and Formas ) is also acknowledged.
Keywords
- Energy storage
- Li-ion
- Lithium
- Multifunctional
- Safety