Abstract
We introduce a multi-Tasking graph convolutional neural network, HydraGNN, to simultaneously predict both global and atomic physical properties and demonstrate with ferromagnetic materials. We train HydraGNN on an open-source ab initio density functional theory (DFT) dataset for iron-platinum with a fixed body centered tetragonal lattice structure and fixed volume to simultaneously predict the mixing enthalpy (a global feature of the system), the atomic charge transfer, and the atomic magnetic moment across configurations that span the entire compositional range. By taking advantage of underlying physical correlations between material properties, multi-Task learning (MTL) with HydraGNN provides effective training even with modest amounts of data. Moreover, this is achieved with just one architecture instead of three, as required by single-Task learning (STL). The first convolutional layers of the HydraGNN architecture are shared by all learning tasks and extract features common to all material properties. The following layers discriminate the features of the different properties, the results of which are fed to the separate heads of the final layer to produce predictions. Numerical results show that HydraGNN effectively captures the relation between the configurational entropy and the material properties over the entire compositional range. Overall, the accuracy of simultaneous MTL predictions is comparable to the accuracy of the STL predictions. In addition, the computational cost of training HydraGNN for MTL is much lower than the original DFT calculations and also lower than training separate STL models for each property.
Original language | English |
---|---|
Article number | 025007 |
Journal | Machine Learning: Science and Technology |
Volume | 3 |
Issue number | 2 |
DOIs | |
State | Published - Jun 1 2022 |
Funding
This work was supported in part by the Office of Science of the Department of Energy and by the Laboratory Directed Research and Development (LDRD) Program of Oak Ridge National Laboratory. This research is sponsored by the Artificial Intelligence Initiative as part of the Laboratory Directed Research and Development (LDRD) Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the US Department of Energy under Contract DE-AC05-00OR22725. This work used resources of the Oak Ridge Leadership Computing Facility and of the Edge Computing program at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. * This manuscript has been authored in part by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan ( http://energy.gov/downloads/doe-public-access-plan ).
Keywords
- Condensed matter
- Ferromagnetic system
- Graph neural network
- Multi-Task learning
- Solid solution alloy