Abstract
This work presents a modeling approach for multidimensional combustion simulations of a highly dilute opposed-piston spark-ignited gasoline engine. Detailed chemical kinetics is used to model combustion with no sub-grid correction for reaction rates based on the turbulent fluctuations of temperature and species mass fractions . Turbulence is modeled using RNG k-ϵ model and the RANS-length scales resolution is done efficiently by the use of automatic mesh refinement when and where the flow parameter curvature (2nd derivative) is large. The laminar flame is thickened by the RANS viscosity and a constant turbulent Schmidt (Sc) number and a refined mesh (sufficient to resolve the thickened turbulent flame) is used to get accurate predictions of turbulent flame speeds. An accurate chemical kinetics mechanism is required to model flame kinetics and fuel burn rates under the conditions of interest. For practical computational fluid dynamics applications, use of large detailed chemistry mechanisms with 1000s of species is both costly as well as memory intensive. For this reason, skeletal mechanisms with a lower number of species (typically ~100) reduced under specific operating conditions are often used. In this work, a new primary reference fuel chemical mechanism is developed to better correlate with the laminar flame speed data, relevant for highly dilute engine conditions. Simulations are carried out in a dilute gasoline engine with opposed piston architecture, and results are presented here across various dilution conditions.
Original language | English |
---|---|
Title of host publication | Emissions Control Systems; Instrumentation, Controls, and Hybrids; Numerical Simulation; Engine Design and Mechanical Development |
Publisher | American Society of Mechanical Engineers |
ISBN (Electronic) | 9780791858325 |
DOIs | |
State | Published - 2017 |
Event | ASME 2017 Internal Combustion Engine Division Fall Technical Conference, ICEF 2017 - Seattle, United States Duration: Oct 15 2017 → Oct 18 2017 |
Publication series
Name | ASME 2017 Internal Combustion Engine Division Fall Technical Conference, ICEF 2017 |
---|---|
Volume | 2 |
Conference
Conference | ASME 2017 Internal Combustion Engine Division Fall Technical Conference, ICEF 2017 |
---|---|
Country/Territory | United States |
City | Seattle |
Period | 10/15/17 → 10/18/17 |
Funding
This research used resources of the Oak Ridge Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC05-00OR22725. This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).