Abstract
Monte Carlo shielding analysis capabilities in SCALE 6 are centered on the Consistent Adjoint Driven Importance Sampling (CADIS) methodology. CADIS is used to create an importance map for space/energy weight windows as well as a biased source distribution. New to SCALE 6 are the Monaco functional module, a multi-group fixed-source Monte Carlo transport code, and the Monaco with Automated Variance Reduction using Importance Calculations (MAVRIC) sequence. MAVRIC uses the Denovo code (also new to SCALE 6) to compute coarse-mesh discrete ordinates solutions that are used by CADIS to form an importance map and biased source distribution for the Monaco Monte Carlo code. MAVRIC allows the user to optimize the Monaco calculation for a specific tally using the CADIS method with little extra input compared with a standard Monte Carlo calculation. When computing several tallies at once or a mesh tally over a large volume of space, an extension of the CADIS method called FW-CADIS can be used to help the Monte Carlo simulation spread particles over phase space to obtain more uniform relative uncertainties.
Original language | English |
---|---|
Pages (from-to) | 289-313 |
Number of pages | 25 |
Journal | Nuclear Technology |
Volume | 174 |
Issue number | 2 |
DOIs | |
State | Published - May 2011 |
Keywords
- Monte carlo
- Shielding
- Variance reduction