Abstract
Atomistic molecular dynamics (MD) simulations and contrast variation small angle neutron scattering (SANS) have been combined to investigate the Generation-5 polyelectrolyte polyamidoamine starburst dendrimer. This work reveals the dendrimer conformational dependence on counterion association at different levels of molecular charge. The accuracy of the simulations is verified through satisfactory comparison between modeled results, such as excess intra-dendrimer scattering length density distribution and hydration level, and their experimental counterparts. While the counterion distributions are not directly measureable with SANS, the spatial distribution of the counterions and their dendrimer association are extracted from the validated MD equilibrium trajectories. It is found that the conformation of the charged dendrimer is strongly dependent on the counterion association. Sensitivity of the distribution of counterions around charged amines to the counterion valency is qualitatively explained by adopting Langmuir adsorption theory. Moreover, via extending the concept of electrical double layer for compact charged colloids, we define an effective radius of a charged dendrimer including the spatial distribution of counterions in its vicinity. Within the same framework, the correlation between the strength of intra-dendrimer electrostatic repulsion and the counterion valency and dynamics is also addressed.
Original language | English |
---|---|
Article number | 064902 |
Journal | Journal of Chemical Physics |
Volume | 137 |
Issue number | 6 |
DOIs | |
State | Published - Aug 14 2012 |
Funding
This research at Oak Ridge National Laboratory's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. The research carried out at the Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. We greatly appreciate the SANS beam time from SNS, ORNL, and ILL, France. The computational support from the ORNL Institutional Cluster (OIC) is also acknowledged.
Funders | Funder number |
---|---|
Scientific User Facilities Division | |
U.S. Department of Energy | |
Basic Energy Sciences | |
Oak Ridge National Laboratory |