Modelling of power exhaust in TCV positive and negative triangularity L-mode plasmas

E. Tonello, F. Mombelli, O. Février, G. Alberti, T. Bolzonella, G. Durr-Legoupil-Nicoud, S. Gorno, H. Reimerdes, C. Theiler, N. Vianello, M. Passoni

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

L-mode negative triangularity (NT) operation is a promising alternative to the positive triangularity (PT) H-mode as a high-confinement edge localised mode-free operational regime. In this work, two TCV Ohmic L-mode core density ramps with opposite triangularity δ ≃ ± 0.3 are investigated using SOLPS-ITER modelling. This numerical study aims to investigate the power exhaust differences between NT and PT focusing, in particular, on the geometrical effect of triangularity. To disentangle the latter from differences related to cross-field transport, anomalous diffusivities for particle ( D n A N ) and energy ( χ e / i A N ) transport are fixed to the same values in PT and NT. The simulation results clearly show dissimilar transport and accumulation of neutral particles in the scrape-off layer for the two configurations. This gives rise to different ionization sources in the edge and divertor regions and produces differences in the poloidal and cross-field fluxes, ultimately leading to different power and particle divertor fluxes in the two configurations. Simulations recover the experimental feature of a hotter and attached outer target ( T e , OSP NT ≳ 5 eV ) in the NT scenario compared to the PT counterpart.

Original languageEnglish
Article number065006
JournalPlasma Physics and Controlled Fusion
Volume66
Issue number6
DOIs
StatePublished - Jun 2024
Externally publishedYes

Keywords

  • modelling
  • negative triangularity
  • plasma detachment
  • power exhaust
  • TCV
  • tokamak

Fingerprint

Dive into the research topics of 'Modelling of power exhaust in TCV positive and negative triangularity L-mode plasmas'. Together they form a unique fingerprint.

Cite this