TY - GEN
T1 - Modeling the strength and ductility of magnesium alloys containing nanotwins
AU - Gorti, S. B.
AU - Radhakrishnan, B.
PY - 2013
Y1 - 2013
N2 - Magnesium alloys have been receiving much attention recently as potential lightweight alternatives to steel for automotive and other applications, but the poor formability of these alloys at low temperatures has limited their widespread adoption for automotive applications. Recent work with face centered cubic (FCC) materials has shown that introduction of twins at the nanometer scale in ultra-fine grained FCC polycrystals can provide significant increase in strength with a simultaneous improvement in ductility. This objective of this work is to explore the feasibility of extending this concept to hexagonal close packed (HCP) materials, with particular focus on using this approach to increase both strength and ductility of magnesium alloys. A crystal plasticity based finite element (CPFE) model is used to study the effect of varying the crystallographic texture and the spacing between the nanoscale twins on the strength and ductility of HCP polycrystals. Deformation of the material is assumed to occur by crystallographic slip, and in addition to the basal and prismatic slip systems, slip is also assumed to occur on the {1 0 1 1} planes that are associated with compression twins in these materials. The slip system strength of the pyramidal systems containing the nanotwins is assumed to be much lower than the strength of the other systems, which is assumed to scale with the spacing between the nanotwins. The CPFE model is used to compute the stress-strain response for different microstrucrutral parameters, and a criterion based on a critical slip system shear strain and a critical hydrostatic stress is used to compute the limiting strength and ductility, with the ultimate goal of identifying the texture and nanotwin spacing that can lead to the optimum values for these parameters.
AB - Magnesium alloys have been receiving much attention recently as potential lightweight alternatives to steel for automotive and other applications, but the poor formability of these alloys at low temperatures has limited their widespread adoption for automotive applications. Recent work with face centered cubic (FCC) materials has shown that introduction of twins at the nanometer scale in ultra-fine grained FCC polycrystals can provide significant increase in strength with a simultaneous improvement in ductility. This objective of this work is to explore the feasibility of extending this concept to hexagonal close packed (HCP) materials, with particular focus on using this approach to increase both strength and ductility of magnesium alloys. A crystal plasticity based finite element (CPFE) model is used to study the effect of varying the crystallographic texture and the spacing between the nanoscale twins on the strength and ductility of HCP polycrystals. Deformation of the material is assumed to occur by crystallographic slip, and in addition to the basal and prismatic slip systems, slip is also assumed to occur on the {1 0 1 1} planes that are associated with compression twins in these materials. The slip system strength of the pyramidal systems containing the nanotwins is assumed to be much lower than the strength of the other systems, which is assumed to scale with the spacing between the nanotwins. The CPFE model is used to compute the stress-strain response for different microstrucrutral parameters, and a criterion based on a critical slip system shear strain and a critical hydrostatic stress is used to compute the limiting strength and ductility, with the ultimate goal of identifying the texture and nanotwin spacing that can lead to the optimum values for these parameters.
UR - http://www.scopus.com/inward/record.url?scp=84899760551&partnerID=8YFLogxK
U2 - 10.1557/opl.2013.499
DO - 10.1557/opl.2013.499
M3 - Conference contribution
AN - SCOPUS:84899760551
SN - 9781632661067
T3 - Materials Research Society Symposium Proceedings
SP - 12
EP - 17
BT - Mechanical Behavior of Metallic Nanostructured Materials
PB - Materials Research Society
T2 - 2012 MRS Fall Meeting
Y2 - 25 November 2012 through 30 November 2012
ER -