TY - JOUR
T1 - Modeling of Friction Stir Welding (FSW) process with Smooth Particle Hydrodynamics (SPH)
AU - Tartakovsky, Alexandre
AU - Grant, Glenn
AU - Sun, Xin
AU - Khaleel, Moe
PY - 2006
Y1 - 2006
N2 - Since its invention fifteen years ago, Friction Stir Welding (FSW) has found commercial applications in marine, aerospace, rail, and now automotive industries. Development of the FSW process for each new application, however, has remained largely empirical. Few detailed numerical modeling techniques have been developed that can explain and predict important features of the process physics. This is particularly true in the areas of material flow, mixing mechanisms, and void prediction. In this paper we present a novel modeling approach to simulate FSW processes that may have significant advantages over current traditional finite element or finite difference based methods. The proposed model is based on the Smoothed Particle Hydrodynamics (SPH) method. Unlike traditional grid-based methods, Lagrangian particle methods such as SPH can simulate the dynamics of interfaces, large material deformations, void formations and the material's strain and temperature history without employing complex tracking schemes. Two- and three-dimensional FSW simulations for different tool designs are presented. Preliminary numerical results are in qualitative agreement with experimental observations. Detailed comparisons between experimental measurements and larger scale FSW simulations are required to further validate and calibrate the SPH based FSW model.
AB - Since its invention fifteen years ago, Friction Stir Welding (FSW) has found commercial applications in marine, aerospace, rail, and now automotive industries. Development of the FSW process for each new application, however, has remained largely empirical. Few detailed numerical modeling techniques have been developed that can explain and predict important features of the process physics. This is particularly true in the areas of material flow, mixing mechanisms, and void prediction. In this paper we present a novel modeling approach to simulate FSW processes that may have significant advantages over current traditional finite element or finite difference based methods. The proposed model is based on the Smoothed Particle Hydrodynamics (SPH) method. Unlike traditional grid-based methods, Lagrangian particle methods such as SPH can simulate the dynamics of interfaces, large material deformations, void formations and the material's strain and temperature history without employing complex tracking schemes. Two- and three-dimensional FSW simulations for different tool designs are presented. Preliminary numerical results are in qualitative agreement with experimental observations. Detailed comparisons between experimental measurements and larger scale FSW simulations are required to further validate and calibrate the SPH based FSW model.
UR - http://www.scopus.com/inward/record.url?scp=85072419641&partnerID=8YFLogxK
U2 - 10.4271/2006-01-1394
DO - 10.4271/2006-01-1394
M3 - Conference article
AN - SCOPUS:85072419641
SN - 0148-7191
JO - SAE Technical Papers
JF - SAE Technical Papers
T2 - 2006 SAE World Congress
Y2 - 3 April 2006 through 6 April 2006
ER -