TY - GEN
T1 - Modeling fatigue damage in long-fiber thermoplastics
AU - Nguyen, B. N.
AU - Kunc, V.
AU - Bapanapalli, S. K.
PY - 2009
Y1 - 2009
N2 - This paper applies a fatigue damage model recently developed for injectionmolded long-fiber thermoplastics (LFTs) to predict the modulus reduction and fatigue lifetime of glass/polyamide 6,6 (PA6,6) specimens. The fatigue model uses a multiscale mechanistic approach to describe fatigue damage accumulation in these materials subjected to cyclic loading. Micromechanical modeling using a modified Eshelby-Mori-Tanaka approach combined with averaging techniques for fiber length and orientation distributions is performed to establish the stiffness reduction relation for the composite as a function of the microcrack volume fraction. Next, continuum damage mechanics and a thermodynamic formulation are used to derive the constitutive relations and the damage evolution law. The fatigue damage model has been implemented in the ABAQUS finite element code and has been applied to analyze fatigue of the studied glass/PA6,6 specimens. The predictions agree well with the experimental results.
AB - This paper applies a fatigue damage model recently developed for injectionmolded long-fiber thermoplastics (LFTs) to predict the modulus reduction and fatigue lifetime of glass/polyamide 6,6 (PA6,6) specimens. The fatigue model uses a multiscale mechanistic approach to describe fatigue damage accumulation in these materials subjected to cyclic loading. Micromechanical modeling using a modified Eshelby-Mori-Tanaka approach combined with averaging techniques for fiber length and orientation distributions is performed to establish the stiffness reduction relation for the composite as a function of the microcrack volume fraction. Next, continuum damage mechanics and a thermodynamic formulation are used to derive the constitutive relations and the damage evolution law. The fatigue damage model has been implemented in the ABAQUS finite element code and has been applied to analyze fatigue of the studied glass/PA6,6 specimens. The predictions agree well with the experimental results.
UR - http://www.scopus.com/inward/record.url?scp=84867881184&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:84867881184
SN - 9781615676033
T3 - 24th Annual Technical Conference of the American Society for Composites 2009 and 1st Joint Canadian-American Technical Conference on Composites
SP - 1872
EP - 1879
BT - 24th Annual Technical Conference of the American Society for Composites 2009 and 1st Joint Canadian-American Technical Conference on Composites
T2 - 24th Annual Technical Conference of the American Society for Composites 2009 and 1st Joint Canadian-American Technical Conference on Composites
Y2 - 15 September 2009 through 17 September 2009
ER -