Abstract
The MAJORANA DEMONSTRATOR is a neutrinoless double-beta decay (0νββ) experiment containing ~30 kg of p-type point-contact germanium detectors enriched to 88% in 76Ge and ~14 kg of natural germanium detectors. The detectors are housed in two electroformed copper cryostats and surrounded by a graded passive shield with an active muon veto. An extensive radioassay campaign was performed prior to installation to insure the use of ultra-clean materials. The DEMONSTRATOR achieved one of the lowest background rates in the region of the 0νββ Q-value, 15.7±1.4 cts/(FWHM t y) from the low-background configuration spanning most of the 64.5 kg-yr active exposure. Nevertheless this background rate is a factor of five higher than the projected background rate. This discrepancy arises from an excess of events from the 232Th decay chain. Background-model fits aim to explain the deviation from assay-based projections, potentially determine the source(s) of observed backgrounds, and allow a precise measurement of the two-neutrino double-beta decay half-life. The fits agree with earlier simulation studies, which indicate the origin of the 232Th excess is not from a near-detector component and have informed design decisions for the next-generation LEGEND experiment. Recent findings have narrowed the suspected locations for the excess activity, motivating a final simulation and assay campaign to complete the background model.
Original language | English |
---|---|
Article number | 100001 |
Journal | AIP Conference Proceedings |
Volume | 2908 |
Issue number | 1 |
DOIs | |
State | Published - Sep 5 2023 |
Event | 8th International Workshop on Low Radioactivity Techniques, LRT 2022 - Rapid City, United States Duration: Jun 14 2022 → Jun 17 2022 |
Funding
This material is supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, the Particle Astrophysics and Nuclear Physics Programs of the National Science Foundation, and the Sanford Underground Research Facility.
Funders | Funder number |
---|---|
Sanford Underground Research Facility | |
National Science Foundation | |
U.S. Department of Energy | |
Office of Science | |
Nuclear Physics |