TY - GEN
T1 - Modeling and optimization study of a tightly integrated rotary electric motor-hydraulic pump
AU - Bohach, Garrett R.
AU - Nishanth,
AU - Severson, Eric
AU - van de Ven, James D.
N1 - Publisher Copyright:
Copyright © 2019 ASME
PY - 2020
Y1 - 2020
N2 - To meet the growing trend of electrification of mechanical systems, this paper presents a compactly integrated electric motor and hydraulic pump. The proposed application for this machine requires high flow rates at low pressure differentials and four quadrant operation. The hydraulic pump architecture selected for this machine is a radial ball piston pump. An inside impinged version of this architecture allows for efficient filling of the chambers and is radial balanced, both of which allow high-speed operation for increased power density. The radial ball piston pump is less expensive to manufacture and is radially more compact than a standard radial cylindrical piston pump. A model of the pump and the integrated electric motor have been created to study scaling relationships and drive detailed design and optimization. The scaling study considers how displacement is affected by pump diameter, and how the diameter and required torque change with angular velocity. The detailed model considers the effect of valve timing, piston-cylinder clearance, and pump geometry on the efficiency. The model is then exercised in an optimization of the machine parameters.
AB - To meet the growing trend of electrification of mechanical systems, this paper presents a compactly integrated electric motor and hydraulic pump. The proposed application for this machine requires high flow rates at low pressure differentials and four quadrant operation. The hydraulic pump architecture selected for this machine is a radial ball piston pump. An inside impinged version of this architecture allows for efficient filling of the chambers and is radial balanced, both of which allow high-speed operation for increased power density. The radial ball piston pump is less expensive to manufacture and is radially more compact than a standard radial cylindrical piston pump. A model of the pump and the integrated electric motor have been created to study scaling relationships and drive detailed design and optimization. The scaling study considers how displacement is affected by pump diameter, and how the diameter and required torque change with angular velocity. The detailed model considers the effect of valve timing, piston-cylinder clearance, and pump geometry on the efficiency. The model is then exercised in an optimization of the machine parameters.
UR - http://www.scopus.com/inward/record.url?scp=85084160639&partnerID=8YFLogxK
U2 - 10.1115/FPMC2019-1626
DO - 10.1115/FPMC2019-1626
M3 - Conference contribution
AN - SCOPUS:85084160639
T3 - ASME/BATH 2019 Symposium on Fluid Power and Motion Control, FPMC 2019
BT - ASME/BATH 2019 Symposium on Fluid Power and Motion Control, FPMC 2019
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME/BATH 2019 Symposium on Fluid Power and Motion Control, FPMC 2019
Y2 - 7 October 2019 through 9 October 2019
ER -