Modeling and control of a cable-driven robot for inspection of wide-area horizontal workspaces

Forrest Montgomery, Joshua Vaughan

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

Cable Driven Parallel Manipulators (CDPMs) utilize flexible wire to actuate an end-effector, allowing rapid accelerations across large workspaces. CDPMs are predominantly modeled with rigid cables, greatly simplifying the analysis. This model is satisfactory for small, fixed masses traveling short distances. However, as cable length increases, the flexibility of the cables, including the variation in stiffness and damping as length changes, cannot be ignored. In addition, the end-effector, which may be modeled as a pendulum, will rotate and contribute to the motion. This paper presents the modeling and control of a large-scale, cable-driven parallel manipulator, with application to inspection of large workspaces. The multi-degree-of-freedom model developed takes into account flexibility of cables and the oscillatory dynamics of the end effector. The dominant dynamics are identified and used to design a control system to limit vibration.

Original languageEnglish
Title of host publicationMechatronics; Mechatronics and Controls in Advanced Manufacturing; Modeling and Control of Automotive Systems and Combustion Engines; Modeling and Validation; Motion and Vibration Control Applications; Multi-Agent and Networked Systems; Path Planning and Motion Control; Robot Manipulators; Sensors and Actuators; Tracking Control Systems; Uncertain Systems and Robustness; Unmanned, Ground and Surface Robotics; Vehicle Dynamic Controls; Vehicle Dynamics and Traffic Control
PublisherAmerican Society of Mechanical Engineers
ISBN (Electronic)9780791850701
DOIs
StatePublished - 2016
Externally publishedYes
EventASME 2016 Dynamic Systems and Control Conference, DSCC 2016 - Minneapolis, United States
Duration: Oct 12 2016Oct 14 2016

Publication series

NameASME 2016 Dynamic Systems and Control Conference, DSCC 2016
Volume2

Conference

ConferenceASME 2016 Dynamic Systems and Control Conference, DSCC 2016
Country/TerritoryUnited States
CityMinneapolis
Period10/12/1610/14/16

Fingerprint

Dive into the research topics of 'Modeling and control of a cable-driven robot for inspection of wide-area horizontal workspaces'. Together they form a unique fingerprint.

Cite this