Abstract
Extreme fast charging is an emerging technology targeting to significantly decrease charging times of electric vehicles to 10-20 minutes, similar to an interstate gas refueling practice. High-power wireless power transfer (WPT) systems with polyphase electromagnetic couplers can be an attractive solution for these applications due to the very high surface power density of polyphase coils with reduced ripple current characteristics on both the primary and secondary sides that result in more compact designs with reduced dc bus bar capacitor requirements. In addition, WPT systems offer automated charging process, which can be an enabling technology for connected and automated vehicles, with high-efficiency, convenience, safety, and flexibility. This study presents a matrix representation of a mathematical model for a three-phase WPT system with series-series connected three-phase resonant compensation networks. Nonzero interphase mutual inductances between the same side phase windings are considered for tuning to obtain a circuit model for parametric sensitivity. Simulation and experimental results presented for a 50-kW experimental prototype to demonstrate the operation of the polyphase WPT system.
Original language | English |
---|---|
Pages | 1885-1890 |
Number of pages | 6 |
DOIs | |
State | Published - 2022 |
Event | 37th Annual IEEE Applied Power Electronics Conference and Exposition, APEC 2022 - Houston, United States Duration: Mar 20 2022 → Mar 24 2022 |
Conference
Conference | 37th Annual IEEE Applied Power Electronics Conference and Exposition, APEC 2022 |
---|---|
Country/Territory | United States |
City | Houston |
Period | 03/20/22 → 03/24/22 |
Funding
This manuscript has been authored by Oak Ridge National Laboratory, operated by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).
Funders | Funder number |
---|---|
U.S. Department of Energy |
Keywords
- electric vehicle
- polyphase wireless power transfer
- resonance
- wireless charging