Modeling and Analysis of a Polyphase Wireless Power Transfer System for EV Charging Applications

Rong Zeng, Omer C. Onar, Mostak Mohammad, Gui Jia Su, Erdem Asa, Veda P. Galigekere

Research output: Contribution to conferencePaperpeer-review

4 Scopus citations

Abstract

Extreme fast charging is an emerging technology targeting to significantly decrease charging times of electric vehicles to 10-20 minutes, similar to an interstate gas refueling practice. High-power wireless power transfer (WPT) systems with polyphase electromagnetic couplers can be an attractive solution for these applications due to the very high surface power density of polyphase coils with reduced ripple current characteristics on both the primary and secondary sides that result in more compact designs with reduced dc bus bar capacitor requirements. In addition, WPT systems offer automated charging process, which can be an enabling technology for connected and automated vehicles, with high-efficiency, convenience, safety, and flexibility. This study presents a matrix representation of a mathematical model for a three-phase WPT system with series-series connected three-phase resonant compensation networks. Nonzero interphase mutual inductances between the same side phase windings are considered for tuning to obtain a circuit model for parametric sensitivity. Simulation and experimental results presented for a 50-kW experimental prototype to demonstrate the operation of the polyphase WPT system.

Original languageEnglish
Pages1885-1890
Number of pages6
DOIs
StatePublished - 2022
Event37th Annual IEEE Applied Power Electronics Conference and Exposition, APEC 2022 - Houston, United States
Duration: Mar 20 2022Mar 24 2022

Conference

Conference37th Annual IEEE Applied Power Electronics Conference and Exposition, APEC 2022
Country/TerritoryUnited States
CityHouston
Period03/20/2203/24/22

Funding

This manuscript has been authored by Oak Ridge National Laboratory, operated by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

FundersFunder number
U.S. Department of Energy

    Keywords

    • electric vehicle
    • polyphase wireless power transfer
    • resonance
    • wireless charging

    Fingerprint

    Dive into the research topics of 'Modeling and Analysis of a Polyphase Wireless Power Transfer System for EV Charging Applications'. Together they form a unique fingerprint.

    Cite this