TY - JOUR

T1 - Minkowski and Galilei/Newton fluid dynamics

T2 - A geometric 3 + 1 spacetime perspective

AU - Cardall, Christian Y.

N1 - Publisher Copyright:
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

PY - 2019/3

Y1 - 2019/3

N2 - A kinetic theory of classical particles serves as a unified basis for developing a geometric 3 + 1 spacetime perspective on fluid dynamics capable of embracing both Minkowski and Galilei/Newton spacetimes. Parallel treatment of these cases on as common a footing as possible reveals that the particle four-momentum is better regarded as comprising momentum and inertia rather than momentum and energy; and, consequently, that the object now known as the stress-energy or energy-momentum tensor is more properly understood as a stress-inertia or inertia-momentum tensor. In dealing with both fiducial and comoving frames as fluid dynamics requires, tensor decompositions in terms of the four-velocities of observers associated with these frames render use of coordinate-free geometric notation not only fully viable, but conceptually simplifying. A particle number four-vector, three-momentum (1, 1) tensor, and kinetic energy four-vector characterize a simple fluid and satisfy balance equations involving spacetime divergences on both Minkowski and Galilei/Newton spacetimes. Reduced to a fully 3 + 1 form, these equations yield the familiar conservative formulations of special relativistic and non-relativistic fluid dynamics as partial differential equations in inertial coordinates, and in geometric form will provide a useful conceptual bridge to arbitrary-Lagrange-Euler and general relativistic formulations.

AB - A kinetic theory of classical particles serves as a unified basis for developing a geometric 3 + 1 spacetime perspective on fluid dynamics capable of embracing both Minkowski and Galilei/Newton spacetimes. Parallel treatment of these cases on as common a footing as possible reveals that the particle four-momentum is better regarded as comprising momentum and inertia rather than momentum and energy; and, consequently, that the object now known as the stress-energy or energy-momentum tensor is more properly understood as a stress-inertia or inertia-momentum tensor. In dealing with both fiducial and comoving frames as fluid dynamics requires, tensor decompositions in terms of the four-velocities of observers associated with these frames render use of coordinate-free geometric notation not only fully viable, but conceptually simplifying. A particle number four-vector, three-momentum (1, 1) tensor, and kinetic energy four-vector characterize a simple fluid and satisfy balance equations involving spacetime divergences on both Minkowski and Galilei/Newton spacetimes. Reduced to a fully 3 + 1 form, these equations yield the familiar conservative formulations of special relativistic and non-relativistic fluid dynamics as partial differential equations in inertial coordinates, and in geometric form will provide a useful conceptual bridge to arbitrary-Lagrange-Euler and general relativistic formulations.

KW - Kinetic theory of fluids

KW - Newtonian and non-Newtonian fluids

KW - Statistical

UR - http://www.scopus.com/inward/record.url?scp=85063364810&partnerID=8YFLogxK

U2 - 10.3390/fluids4010001

DO - 10.3390/fluids4010001

M3 - Article

AN - SCOPUS:85063364810

SN - 2311-5521

VL - 4

JO - Fluids

JF - Fluids

IS - 1

M1 - 1

ER -