Microtearing modes at the top of the pedestal

D. Dickinson, C. M. Roach, S. Saarelma, R. Scannell, A. Kirk, H. R. Wilson

Research output: Contribution to journalArticlepeer-review

59 Scopus citations

Abstract

Microtearing modes (MTMs) are unstable in the shallow gradient region just inside the top of the pedestal in the spherical tokamak experiment MAST, and may play an important role in the pedestal evolution. The linear properties of these instabilities are compared with MTMs deeper inside the core, and further detailed investigations in s- geometry expose the basic drive mechanism, which is not well described by existing theories. In particular, the growth rate of the dominant edge MTM does not peak at a finite collision frequency, as frequently reported for MTMs further into the core. Our study suggests that the edge MTM is driven by a collisionless trapped particle mechanism that is sensitive to magnetic drifts. This drive is enhanced in the outer region of MAST at high magnetic shear and high trapped particle fraction. Observations of similar modes in conventional aspect ratio devices suggest this drive mechanism may be somewhat ubiquitous towards the edge of current day and future hot tokamaks.

Original languageEnglish
Article number074006
JournalPlasma Physics and Controlled Fusion
Volume55
Issue number7
DOIs
StatePublished - Jul 2013
Externally publishedYes

Fingerprint

Dive into the research topics of 'Microtearing modes at the top of the pedestal'. Together they form a unique fingerprint.

Cite this