Abstract
Recent scanning tunneling microscopy measurements on cuprate superconductors have revealed remarkable spatial inhomogeneities in the single-particle energy gap. Using cellular dynamical mean-field theory, we study the zero temperature superconducting properties of a single-band Hubbard model with a spatial modulation of the electron density. We find that the inhomogeneity in the electronic structure results in a substantial spatial variation in the superconducting order parameter and single-particle energy gap, reminiscent of the experimental results. In particular, we find that the order parameter and gap amplitudes in the hole-rich regions are significantly enhanced over the corresponding quantities in a uniform system, if the hole-rich regions are embedded in regions with smaller hole density.
Original language | English |
---|---|
Article number | 214525 |
Journal | Physical Review B - Condensed Matter and Materials Physics |
Volume | 81 |
Issue number | 21 |
DOIs | |
State | Published - Jun 29 2010 |