TY - JOUR
T1 - Microextraction-Single Particle-Inductively Coupled Plasma-Mass Spectrometry for the Direct Analysis of Nanoparticles on Surfaces
AU - Stanberry, Jordan S.
AU - Andrews, Hunter B.
AU - Thompson, Cyril V.
AU - Ticknor, Brian W.
AU - Manard, Benjamin T.
N1 - Publisher Copyright:
© 2025 American Chemical Society.
PY - 2025
Y1 - 2025
N2 - A novel employment of single particle-inductively coupled plasma-mass spectrometry (SP-ICP-MS) was developed, where a microextraction (ME) probe is used to sample nanoparticles from a surface and analyze them in a single analytical step. The effects of several parameters on the performance of ME-SP-ICP-MS were investigated, including the flow rate, choice of carrier solution, particle size, and the design of the microextraction probe head itself. The optimized ME-SP-ICP-MS technique was used to compare the extraction efficiency (EE, defined as the ratio of particles measured to particles deposited on the surface) of the commercial probe head to a newly designed SP polyether ether ketone (PEEK) probe head. The SP PEEK probe head was found to have increased EE compared to the commercial probe head (8.5 ± 3% vs 3.9 ± 3%, respectively). Increasing the carrier solution flow rate was found to decrease the total analysis time at the cost of decreasing EE. Extraction efficiencies for ME-SP-ICP-MS were typically 4-10%, which is similar to transport efficiencies (1-10%) for conventional SP-ICP-MS. Lastly, ME-SP-ICP-MS was employed for the analysis of nano- and microparticles. The sizes of gold nanoparticles, 30 ± 3 and 51 ± 1.9 nm (certified sizes), and iron-based microparticles, 1000 ± 50 nm (certified size), were accurately determined to be 32.2 ± 2.5, 50.8 ± 3.4, and 1030 ± 57 nm, respectively, by ME-SP-ICP-MS. This work demonstrates the potential of ME-SP-ICP-MS for the direct analysis of particles on common collection surfaces (GSR tabs, carbon planchettes, etc.) while retaining spatial information on particle distribution across the surface.
AB - A novel employment of single particle-inductively coupled plasma-mass spectrometry (SP-ICP-MS) was developed, where a microextraction (ME) probe is used to sample nanoparticles from a surface and analyze them in a single analytical step. The effects of several parameters on the performance of ME-SP-ICP-MS were investigated, including the flow rate, choice of carrier solution, particle size, and the design of the microextraction probe head itself. The optimized ME-SP-ICP-MS technique was used to compare the extraction efficiency (EE, defined as the ratio of particles measured to particles deposited on the surface) of the commercial probe head to a newly designed SP polyether ether ketone (PEEK) probe head. The SP PEEK probe head was found to have increased EE compared to the commercial probe head (8.5 ± 3% vs 3.9 ± 3%, respectively). Increasing the carrier solution flow rate was found to decrease the total analysis time at the cost of decreasing EE. Extraction efficiencies for ME-SP-ICP-MS were typically 4-10%, which is similar to transport efficiencies (1-10%) for conventional SP-ICP-MS. Lastly, ME-SP-ICP-MS was employed for the analysis of nano- and microparticles. The sizes of gold nanoparticles, 30 ± 3 and 51 ± 1.9 nm (certified sizes), and iron-based microparticles, 1000 ± 50 nm (certified size), were accurately determined to be 32.2 ± 2.5, 50.8 ± 3.4, and 1030 ± 57 nm, respectively, by ME-SP-ICP-MS. This work demonstrates the potential of ME-SP-ICP-MS for the direct analysis of particles on common collection surfaces (GSR tabs, carbon planchettes, etc.) while retaining spatial information on particle distribution across the surface.
UR - http://www.scopus.com/inward/record.url?scp=85214560472&partnerID=8YFLogxK
U2 - 10.1021/acs.analchem.4c04794
DO - 10.1021/acs.analchem.4c04794
M3 - Article
AN - SCOPUS:85214560472
SN - 0003-2700
JO - Analytical Chemistry
JF - Analytical Chemistry
ER -