Abstract
Mercury (Hg) is a toxic heavy metal that poses significant human and environmental health risks. Soils and sediments, where Hg can exist as the Hg sulfide mineral metacinnabar (ß-HgS), represent major Hg reservoirs in aquatic environments. Metacinnabar has historically been considered a sink for Hg in all but severely acidic environments, and thus disregarded as a potential source of Hg back to aqueous or gaseous pools. Here, we conducted a combination of field and laboratory incubations to identify the potential for metacinnabar as a source of dissolved Hg within near neutral pH environments and the underpinning (a)biotic mechanisms at play. We show that the abundant and widespread sulfur-oxidizing bacterium Thiobacillus extensively colonized metacinnabar chips incubated within aerobic, near neutral pH creek sediments. Laboratory incubations of axenic Thiobacillus cultures lead to the release of metacinnabar-hosted Hg(II) and subsequent volatilization to Hg(0). This dissolution and volatilization was greatly enhanced in the presence of the sulfur intermediate, thiosulfate, which served a dual role by enhancing HgS dissolution and providing an additional metabolic substrate for Thiobacillus. These findings reveal a new coupled abiotic-biotic pathway for the transformation of metacinnabar-bound Hg(II) to Hg(0), while expanding the sulfide substrates available for neutrophilic chemosynthetic bacteria to Hg-laden sulfides. They also point to mineral-hosted Hg as an underappreciated source of gaseous elemental Hg to the environment.
Original language | English |
---|---|
Article number | 596 |
Journal | Frontiers in Microbiology |
Volume | 6 |
Issue number | MAY |
DOIs | |
State | Published - 2015 |
Keywords
- Mercury
- Mercury sulfide dissolution
- Metacinnabar
- Sulfur chemosynthesis
- Sulfur metabolism
- Sulfur oxidation
- Thiobacillus
- Thiosulfate