Abstract
Deep reinforcement learning (DRL) approaches have been used in various application areas to improve efficiency, optimization, or automation. However, very little is known about how the DRL algorithms make decisions and what features affect their performance. Using a case study of a DRL based Heating, Ventilation and Air Conditioning (HVAC) optimization methodology, we demonstrate how we can address these challenges by applying interpretability tools and systematically exploring the model inputs for better understanding the DRL behaviour and decision making process. We developed a methodology for interpretable reinforcement learning and evaluated our approach in real-world house located in Knoxville, TN. Our findings explain the reasoning behind DRL-based optimization decisions under different circumstances which has been discussed and confirmed by the experts in the field.
Original language | English |
---|---|
Title of host publication | Proceedings - 2020 IEEE International Conference on Big Data, Big Data 2020 |
Editors | Xintao Wu, Chris Jermaine, Li Xiong, Xiaohua Tony Hu, Olivera Kotevska, Siyuan Lu, Weijia Xu, Srinivas Aluru, Chengxiang Zhai, Eyhab Al-Masri, Zhiyuan Chen, Jeff Saltz |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 1555-1564 |
Number of pages | 10 |
ISBN (Electronic) | 9781728162515 |
DOIs | |
State | Published - Dec 10 2020 |
Event | 8th IEEE International Conference on Big Data, Big Data 2020 - Virtual, Atlanta, United States Duration: Dec 10 2020 → Dec 13 2020 |
Publication series
Name | Proceedings - 2020 IEEE International Conference on Big Data, Big Data 2020 |
---|
Conference
Conference | 8th IEEE International Conference on Big Data, Big Data 2020 |
---|---|
Country/Territory | United States |
City | Virtual, Atlanta |
Period | 12/10/20 → 12/13/20 |
Funding
ACKNOWLEDGMENT This work was funded by the U.S. Department of Energy, Energy Efficiency and Renewable Energy, Building Technology Office under contract number DE-AC05-00OR22725.
Keywords
- decision making
- deep learning
- demand response
- interpretability
- machine learning
- optimization
- reinforcement learning