Metal-organic frameworks based on double-bond-coupled Di-isophthalate linkers with high hydrogen and methane uptakes

Xi Sen Wang, Ma Shengqian, Karsten Rauch, Jason M. Simmons, Daqiang Yuan, Xiaoping Wang, Taner Yildirim, William C. Cole, Joseph J. López, Armin De Meijere, Hong Cai Zhou

Research output: Contribution to journalArticlepeer-review

249 Scopus citations

Abstract

Solvothermal reactions of Cu(NO3)2 with azoxybenzene-3,3′,5,5′-tetracarboxylic acid (ILaobtc) or transstilbene-3,3′,5,5′-tetracarboxylic acid (H4sbtc) give rise to two isostructural microporous metal-organic frameworks, Cu 2(abtc)(H2O)2·3DMA (PCN-10, abtc = azobenzene-3,3′,5,5′-tetracarboxylate) and Cu2(sbtc)- (H2O)2·3DMA (PCN-11, sbtc = trans-stilbene-3, 3′,5,5′-tetracarboxylate), respectively. Both PCN-10 and PCN-11 possess significant enduring porosity with Langmuir surface areas of 1779 and 2442 m2/g (corresponding to BET surface areas of 1407 or 1931 m 2/g, respectively) and contain nanoscopic cages and coordinatively unsaturated metal centers. At 77 K, 760 Torr, the excess gravimetric (volumetric) hydrogen uptake of PCN-10 is 2.34 wt % (18.0 g/L) and that of PCN-11 can reach 2.55 wt % (19.1 g/L). Gas-adsorption studies also suggest that MOFs containing C=C double bonds are more favorable than those with N=N double bond in retaining enduring porosity after thermal activation, although N=N has slightly higher H2 affinity. The excess gravimetric (volumetric) adsorption at 77 K saturates around 20 atm and reaches values of 4.33% (33.2 g/L) and 5.05% (37.8 g/L) for PCN-10 and PCN-11, respectively. In addition to its appreciable hydrogen uptake, PCN-11 has an excess methane uptake of 171 cm3(STP)/cm3 at 298 K and 35 bar, approaching the DOE target of 180 v(STP)/v for methane storage at ambient temperature. Thus, PCN-11 represents one of the few materials that is applicable to both hydrogen and methane storage applications.

Original languageEnglish
Pages (from-to)3145-3152
Number of pages8
JournalChemistry of Materials
Volume20
Issue number9
DOIs
StatePublished - May 13 2008
Externally publishedYes

Fingerprint

Dive into the research topics of 'Metal-organic frameworks based on double-bond-coupled Di-isophthalate linkers with high hydrogen and methane uptakes'. Together they form a unique fingerprint.

Cite this