Meso-scale magnetic signatures for nuclear reactor steel irradiation embrittlement monitoring

J. D. Suter, P. Ramuhalli, J. S. McCloy, K. Xu, S. Hu, Y. Li, W. Jiang, D. J. Edwards, A. L. Schemer-Kohrn, B. R. Johnson

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Scopus citations

Abstract

Verifying the structural integrity of passive components in light water and advanced reactors will be necessary to ensure safe, long-term operations of the existing U.S. nuclear fleet. This objective can be achieved through nondestructive condition monitoring techniques, which can be integrated with plant operations to quantify the "state of health" of structural materials in real-time. While nondestructive methods for monitoring many classes of degradation (such as fatigue or stress corrosion cracking) are relatively advanced, this is not the case for degradation caused by irradiation. The development of nondestructive evaluation technologies for these types of degradation will require advanced materials characterization techniques and tools that enable comprehensive understanding of nuclear reactor material microstructural and behavioral changes under extreme operating environments. Irradiation-induced degradation of reactor steels causes changes in their microstructure that impacts their micro-magnetic properties. In this paper, we describe preliminary results of integrating advanced material characterization techniques with meso-scale computational models. In the future, this will help to provide an interpretive understanding of the state of degradation in structural materials. Microstructural data are presented from monocrystalline Fe and are correlated with variable-field magnetic force microscopy and micro-magnetic measurements. Ongoing research is focused on extending the measurements and models on thin films to gain insights into the structural state of irradiated materials and the resulting impact on magnetic properties. Preliminary conclusions from these correlations are presented, and next steps described.

Original languageEnglish
Title of host publication41st Annual Review of Progress in Quantitative Nondestructive Evaluation, Volume 34
EditorsDale E. Chimenti, Leonard J. Bond
PublisherAmerican Institute of Physics Inc.
Pages1476-1485
Number of pages10
ISBN (Electronic)9780735412927
DOIs
StatePublished - 2015
Externally publishedYes
Event41st Annual Review of Progress in Quantitative Nondestructive Evaluation, QNDE 2014 - Boise, United States
Duration: Jul 20 2014Jul 25 2014

Publication series

NameAIP Conference Proceedings
Volume1650
ISSN (Print)0094-243X
ISSN (Electronic)1551-7616

Conference

Conference41st Annual Review of Progress in Quantitative Nondestructive Evaluation, QNDE 2014
Country/TerritoryUnited States
CityBoise
Period07/20/1407/25/14

Fingerprint

Dive into the research topics of 'Meso-scale magnetic signatures for nuclear reactor steel irradiation embrittlement monitoring'. Together they form a unique fingerprint.

Cite this