Abstract
The paper presents a novel and futuristic architecture for a megawatt charging system (MCS) capable of charging light, medium, and heavy-duty vehicles. The station architecture consists of multiport systems with each multiport interfacing the grid, EV, PV, and energy storage system through an intermediate DC bus. The station being a “system of systems” requires a complex software layer with intelligence, control, and communication for effective coordination and utilization of the power electronic interfaces and the assets. The paper elaborates on the station architecture and the associated software layer used for control and coordination. Additionally, the paper provides an approach to utilize hardware-in-the-loop (HIL) capabilities to validate such architectures.
Original language | English |
---|---|
Title of host publication | 2022 IEEE Energy Conversion Congress and Exposition, ECCE 2022 |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
ISBN (Electronic) | 9781728193878 |
DOIs | |
State | Published - 2022 |
Event | 2022 IEEE Energy Conversion Congress and Exposition, ECCE 2022 - Detroit, United States Duration: Oct 9 2022 → Oct 13 2022 |
Publication series
Name | 2022 IEEE Energy Conversion Congress and Exposition, ECCE 2022 |
---|
Conference
Conference | 2022 IEEE Energy Conversion Congress and Exposition, ECCE 2022 |
---|---|
Country/Territory | United States |
City | Detroit |
Period | 10/9/22 → 10/13/22 |
Funding
This work was funded by the U.S. Department of Energy, Office of Vehicle Technology under contract number DE-AC05-00OR22725. This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). Notice: This work was funded by the U.S. Department of Energy, Office of Vehicle Technology under contract number DE-AC05-00OR22725. This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).
Keywords
- Heavy-duty vehicles
- Hierarchical controls and communication
- Megawatt scale charging
- Multiport systems
- Station architecture
- System of systems
- Transportation electrification