Mechanistic Insights into the Superexchange-Interaction-Driven Negative Thermal Expansion in CuO

Research output: Contribution to journalArticlepeer-review

10 Scopus citations

Abstract

The negative thermal expansion (NTE) in CuO is explained via electron-transfer-driven superexchange interaction. The elusive connection between the spin-lattice coupling and NTE of CuO is investigated by neutron scattering and principal strain axes analysis. The density functional theory calculations show as the temperature decreases, the continuously increasing electron transfer accounts for enhancing the superexchange interaction along [101], the principal NTE direction. It is further rationalized that only when the interaction along [101] is preferably enhanced to a certain level compared to the other competing antiferromagnetic exchange pathways can the corresponding NTE occur. Outcomes from this work have implications for controlling the thermal expansion through superexchange interaction, via, for example, optical manipulation, electron or hole doping, etc.

Original languageEnglish
Pages (from-to)6310-6317
Number of pages8
JournalJournal of the American Chemical Society
Volume141
Issue number15
DOIs
StatePublished - Apr 17 2019

Fingerprint

Dive into the research topics of 'Mechanistic Insights into the Superexchange-Interaction-Driven Negative Thermal Expansion in CuO'. Together they form a unique fingerprint.

Cite this