Abstract
This paper describes results from the mechanical evaluation of unirradiated SiC fiber–reinforced SiC matrix composite tubes under a controlled high-temperature steam environment. The experiments were aimed at identifying key material degradation behavior under environments relevant to loss-of-coolant accidents of light water reactors. Mechanical tests of the SiC composite tubes at 1000 °C under steam and inert environments were conducted using a unique test capability. The material tested was a duplex tube with a thick monolithic SiC layer on the outer surface. The tubes were subjected to preloading at ∼100 MPa in tension before exposure to high-temperature steam with up to 75 % of the preload at a constant displacement. In the presence of matrix cracks, the steam exposure caused embrittlement of the SiC composite tubes and failure at a stress level below the pretest stress. The material degradation was explained by a fiber oxidation model, which can be applied to various SiC cladding concepts. The embrittlement could be a limiting factor for using SiC cladding subjected to loss-of-coolant accident conditions.
Original language | English |
---|---|
Journal | Ceramics International |
DOIs | |
State | Accepted/In press - 2024 |
Keywords
- Accident tolerant fuel
- Composite
- Light water reactor
- SiC
- Steam oxidation