Abstract
Post-disruption runaway electron (RE) kinetic energy K and pitch angle sin ϑ are critical parameters for determining resulting first wall material damage during wall strikes, but are very challenging to measure experimentally. During the final loss instability, confined RE K and sin ϑ are reconstructed during center-post wall strikes for both high impurity (high-Z) and low impurity (low-Z) plasmas by combining soft x-ray, hard x-ray, synchrotron emission, and total radiated power measurements. Deconfined (wall impacting) RE sin ϑ is then reconstructed for these shots by using time-decay analysis of infra-red imaging. Additionally, deconfined RE K and sin ϑ are reconstructed for a low-Z downward loss shot by analyzing resulting damage to a sacrificial graphite dome limiter. The damage analysis uses multi-step modeling simulating plasma instability, RE loss orbits, energy deposition, and finally material expansion (MARS-F, KORC, GEANT-4, and finally COMSOL). Overall, mean kinetic energies are found to be in the range ⟨ K ⟩ ≈ 3 − 4 MeV for confined REs. KORC simulations indicate that the final loss instability process does not change individual RE kinetic energy K. Confined RE pitch angles are found to be fairly low initially pre-instability, ⟨ sin ϑ ⟩ ≈ 0.1 − 0.2 , but appear to increase roughly 2 × , to ⟨ sin ϑ ⟩ ≈ 0.3 − 0.4 for both confined and deconfined REs during instability onset in the low-Z case; this increase is not observed in the high-Z case.
Original language | English |
---|---|
Article number | 035020 |
Journal | Plasma Physics and Controlled Fusion |
Volume | 67 |
Issue number | 3 |
DOIs | |
State | Published - Mar 31 2025 |
Funding
This work was supported in part by the U.S. Department of Energy under DE-FG02-07ER54917, DE-FC02-04ER54698, DE-AC05-00OR2275, DE-AC52-07NA27344, DE-NA0003525, and DE-FG02-95ER54309. The technical support of L Chousal and C Jones is gratefully acknowledged. Disclaimer: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
Keywords
- disruptions
- material damage
- tokamak