MatPhase: Material phase prediction for Li-ion Battery Reconstruction using Hierarchical Curriculum Learning

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Scopus citations

Abstract

Li-ion Batteries (LIB), one of the most efficient energy storage devices, are used extensively in many industrial applications. These batteries consist of electrodes that are put together with heterogeneous material compositions. Imaging data of these battery electrodes obtained from X-ray tomography can explain the distribution of material constituents and allow reconstructions to study electron transport pathways. Such reconstructions of material constituents help quantify various associated properties of electrodes (e.g., volume-specific surface area, porosity) which determine the performance of batteries. These images often suffer from low image contrast between multiple material constituents, hence making it difficult for humans to distinguish and characterize these constituents through visual inspection. A minor error in detecting distributions of the material constituents can lead to magnified errors in the calculated parameters of material properties (e.g., porosity). We present MatPhase, a novel hierarchical curriculum learning technique to address the complex task of estimating material constituent distribution in battery electrodes. MatPhase comprises three modules: (i) an uncertainty-aware global model trained to yield inferences conditioned upon global knowledge of material distribution, (ii) a local model to capture relatively more fine-grained (local) distributional signals, (iii) an aggregator model to appropriately fuse the local and global effects towards obtaining the final distribution. On average, MatPhase improves prediction up to 8.5% relative to other sophisticated modeling pipelines and state-of-the-arts (SOTA) object detection models employed in the performance comparison.

Original languageEnglish
Title of host publicationProceedings - 2022 IEEE International Conference on Big Data, Big Data 2022
EditorsShusaku Tsumoto, Yukio Ohsawa, Lei Chen, Dirk Van den Poel, Xiaohua Hu, Yoichi Motomura, Takuya Takagi, Lingfei Wu, Ying Xie, Akihiro Abe, Vijay Raghavan
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1936-1941
Number of pages6
ISBN (Electronic)9781665480451
DOIs
StatePublished - 2022
Event2022 IEEE International Conference on Big Data, Big Data 2022 - Osaka, Japan
Duration: Dec 17 2022Dec 20 2022

Publication series

NameProceedings - 2022 IEEE International Conference on Big Data, Big Data 2022

Conference

Conference2022 IEEE International Conference on Big Data, Big Data 2022
Country/TerritoryJapan
CityOsaka
Period12/17/2212/20/22

Funding

This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a non-exclusive, paid up, irrevocable, world-wide license to publish or reproduce the published form of the manuscript, or allow others to do so, for U.S. Government purposes. The DOE will provide public access to these results in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). noisy data. We envision using the framework to study the cross-sections of cycled electrodes and understand various degradation mechanisms that impact the loss of capacities. Acknowledgements: This work is partially supported by the U.S. DOE, DOE Office of Electricity Dr. Imre Gyuk, Office of Science, Office of ASCR, SciDAC program, under the ”RAPIDS Institute”. This research used resources of the ORNL CADES, which is supported by the DOE Office of Science DE-AC05-00OR22725.

FundersFunder number
U.S. Department of Energy
Office of ScienceDE-AC05-00OR22725
Advanced Scientific Computing Research
Oak Ridge National Laboratory

    Keywords

    • Battery Segmentation
    • Curriculum Learning
    • IDK Classification
    • Uncertainty quantification

    Fingerprint

    Dive into the research topics of 'MatPhase: Material phase prediction for Li-ion Battery Reconstruction using Hierarchical Curriculum Learning'. Together they form a unique fingerprint.

    Cite this