TY - GEN
T1 - MatPhase
T2 - 2022 IEEE International Conference on Big Data, Big Data 2022
AU - Tabassum, Anika
AU - Muralidhar, Nikhil
AU - Kannan, Ramakrishnan
AU - Allu, Srikanth
N1 - Publisher Copyright:
© 2022 IEEE.
PY - 2022
Y1 - 2022
N2 - Li-ion Batteries (LIB), one of the most efficient energy storage devices, are used extensively in many industrial applications. These batteries consist of electrodes that are put together with heterogeneous material compositions. Imaging data of these battery electrodes obtained from X-ray tomography can explain the distribution of material constituents and allow reconstructions to study electron transport pathways. Such reconstructions of material constituents help quantify various associated properties of electrodes (e.g., volume-specific surface area, porosity) which determine the performance of batteries. These images often suffer from low image contrast between multiple material constituents, hence making it difficult for humans to distinguish and characterize these constituents through visual inspection. A minor error in detecting distributions of the material constituents can lead to magnified errors in the calculated parameters of material properties (e.g., porosity). We present MatPhase, a novel hierarchical curriculum learning technique to address the complex task of estimating material constituent distribution in battery electrodes. MatPhase comprises three modules: (i) an uncertainty-aware global model trained to yield inferences conditioned upon global knowledge of material distribution, (ii) a local model to capture relatively more fine-grained (local) distributional signals, (iii) an aggregator model to appropriately fuse the local and global effects towards obtaining the final distribution. On average, MatPhase improves prediction up to 8.5% relative to other sophisticated modeling pipelines and state-of-the-arts (SOTA) object detection models employed in the performance comparison.
AB - Li-ion Batteries (LIB), one of the most efficient energy storage devices, are used extensively in many industrial applications. These batteries consist of electrodes that are put together with heterogeneous material compositions. Imaging data of these battery electrodes obtained from X-ray tomography can explain the distribution of material constituents and allow reconstructions to study electron transport pathways. Such reconstructions of material constituents help quantify various associated properties of electrodes (e.g., volume-specific surface area, porosity) which determine the performance of batteries. These images often suffer from low image contrast between multiple material constituents, hence making it difficult for humans to distinguish and characterize these constituents through visual inspection. A minor error in detecting distributions of the material constituents can lead to magnified errors in the calculated parameters of material properties (e.g., porosity). We present MatPhase, a novel hierarchical curriculum learning technique to address the complex task of estimating material constituent distribution in battery electrodes. MatPhase comprises three modules: (i) an uncertainty-aware global model trained to yield inferences conditioned upon global knowledge of material distribution, (ii) a local model to capture relatively more fine-grained (local) distributional signals, (iii) an aggregator model to appropriately fuse the local and global effects towards obtaining the final distribution. On average, MatPhase improves prediction up to 8.5% relative to other sophisticated modeling pipelines and state-of-the-arts (SOTA) object detection models employed in the performance comparison.
KW - Battery Segmentation
KW - Curriculum Learning
KW - IDK Classification
KW - Uncertainty quantification
UR - http://www.scopus.com/inward/record.url?scp=85147918311&partnerID=8YFLogxK
U2 - 10.1109/BigData55660.2022.10020429
DO - 10.1109/BigData55660.2022.10020429
M3 - Conference contribution
AN - SCOPUS:85147918311
T3 - Proceedings - 2022 IEEE International Conference on Big Data, Big Data 2022
SP - 1936
EP - 1941
BT - Proceedings - 2022 IEEE International Conference on Big Data, Big Data 2022
A2 - Tsumoto, Shusaku
A2 - Ohsawa, Yukio
A2 - Chen, Lei
A2 - Van den Poel, Dirk
A2 - Hu, Xiaohua
A2 - Motomura, Yoichi
A2 - Takagi, Takuya
A2 - Wu, Lingfei
A2 - Xie, Ying
A2 - Abe, Akihiro
A2 - Raghavan, Vijay
PB - Institute of Electrical and Electronics Engineers Inc.
Y2 - 17 December 2022 through 20 December 2022
ER -