Abstract
This paper describes the results of the computational analysis of UltraLight Steel Auto Body (ULSAB) crash simulations that were performed using advanced material modeling techniques. The effects of strain-rate sensitivity on a high strength steel intensive vehicle was analyzed. Frontal and frontal offset crash scenarios were used in a finite element parametric study of the ULSAB body structure. Comparisons are made between the crash results using the piece-wise-linear isotropic plasticity strain-rate dependent material model, and the isotropic plasticity material model based on quasi-static properties. The simulation results show the importance of advanced material modeling techniques for vehicle crash simulations due to strain-rate sensitivity and rapid hardening characteristics of advanced high strength steels. Material substitution was investigated for the main frontal crush structure using the material of similar yield stress a significantly different strain-rate and hardening characteristics.
Original language | English |
---|---|
Journal | SAE Technical Papers |
DOIs | |
State | Published - 2000 |
Event | International Body Engineering Conference - Detroit, MI, United States Duration: Oct 3 2000 → Oct 5 2000 |