Abstract
Graphene is proposed for use in various nanodevice designs, many of which harness emergent quantum properties for device functionality. However, visualization, measurement, and manipulation become nontrivial at nanometer and atomic scales, representing a significant challenge for device fabrication, characterization, and optimization at length scales where quantum effects emerge. Here, proof of principle results at the crossroads between 2D nanoelectronic devices, e-beam-induced modulation, and imaging with secondary electron e-beam induced currents (SEEBIC) is presented. A device platform compatible with scanning transmission electron microscopy investigations is introduced. Then how the SEEBIC imaging technique can be used to visualize conductance and connectivity in single layer graphene nanodevices, even while supported on a thicker substrate (conditions under which conventional imaging fails) is shown. Finally, it is shown that the SEEBIC imaging technique can detect subtle differences in charge transport through time in nonohmic graphene nanoconstrictions indicating the potential to reveal dynamic electronic processes.
Original language | English |
---|---|
Article number | 2101245 |
Journal | Small Methods |
Volume | 6 |
Issue number | 3 |
DOIs | |
State | Published - Mar 18 2022 |
Funding
O.D. and J.L.S. contributed equally to this work. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division (O.D. A.R.L., S.J.), and was performed at the Center for Nanophase Materials Sciences (CNMS), a U.S. Department of Energy, Office of Science User Facility (O.D.). J.A.M. was supported through the UKRI Future Leaders Fellowship, Grant No. MR/S032541/1, with in‐kind support from the Royal Academy of Engineering. The authors acknowledge use of characterization facilities within the David Cockayne Centre for Electron Microscopy, Department of Materials, University of Oxford, alongside financial support provided by the Henry Royce Institute (Grant ref EP/R010145/1).
Keywords
- graphene
- resistive contrast imaging
- scanning transmission electron microscopy
- secondary electron e-beam induced current
- secondary electron yield