Abstract
The effects of the application of a magnetic field on the diagonal stripe spin-glass phase is studied in lightly doped La2-xSrxCuO4 (x=0.014 and 0.024). With increasing magnetic field, the magnetic elastic intensity at the diagonal incommensurate (DIC) positions (1,±ε,0) decreases as opposed to the increase seen in superconducting samples. This diminution in intensity with increasing magnetic field originates from a spin reorientation transition, which is driven by the antisymmetric exchange term in the spin Hamiltonian. On the other hand, the transition temperature, the incommensurability, and the peak width of the diagonal incommensurate correlations are not changed with magnetic field. This result suggests that the magnetic correlations are determined primarily by the charge disproportionation and that the geometry of the diagonal incommensurate magnetism is also determined by effects - that is, stripe formation - which are not purely magnetic in origin. The Dzyaloshinskii-Moriya antisymmetric exchange is nevertheless important in determining the local spin structure in the DIC stripe phase.
Original language | English |
---|---|
Article number | 174508 |
Pages (from-to) | 1745081-1745086 |
Number of pages | 6 |
Journal | Physical Review B - Condensed Matter and Materials Physics |
Volume | 66 |
Issue number | 17 |
State | Published - Nov 1 2002 |
Externally published | Yes |