Abstract
We report a comprehensive inelastic neutron scattering study of the hybrid molecule-based multiferroic compound (ND4)2FeCl5·D2O in the zero-field incommensurate cycloidal phase and the high-field quasicollinear phase. The spontaneous electric polarization changes its direction concurrently with the field-induced magnetic transition, from mostly aligned with the crystallographic a axis to the c axis. To account for such a change in polarization direction, the underlying multiferroic mechanism was proposed to switch from the spin-current model induced via the inverse Dzyaloshinskii-Moriya interaction to the p-d hybridization model. We perform a detailed analysis of the inelastic neutron data of (ND4)2FeCl5·D2O using linear spin-wave theory to quantify magnetic interaction strengths and investigate the possible impact of different multiferroic mechanisms on the magnetic couplings. Our result reveals that the spin dynamics of both multiferroic phases can be well described by a Heisenberg Hamiltonian with easy-plane anisotropy. We do not find notable differences between the optimal model parameters of the two phases. The hierarchy of exchange couplings and the balance among frustrated interactions remain the same between two phases, suggesting that magnetic interactions in (ND4)2FeCl5·D2O are much more robust than the electric polarization in response to delicate reorganizations of the electronic degrees of freedom in an applied magnetic field.
Original language | English |
---|---|
Article number | 224411 |
Journal | Physical Review B |
Volume | 103 |
Issue number | 22 |
DOIs | |
State | Published - Jun 1 2021 |
Bibliographical note
Publisher Copyright:© 2021 American Physical Society.
Funding
We thank F. Ye and C. dela Cruz for valuable discussions and A. Savici for the help in data reduction. X.B. and H.C. acknowledge the support of U.S. DOE BES Early Career Award No. KC0402020 under Contract No. DE-AC05-00OR22725. R.S.F. is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division. This research used resources at the High Flux Isotope Reactor and Spallation Neutron Source, a DOE Office of Science User Facility operated by the Oak Ridge National Laboratory.
Funders | Funder number |
---|---|
U.S. DOE BES | DE-AC05-00OR22725, KC0402020 |
U.S. Department of Energy | |
Basic Energy Sciences | |
Division of Materials Sciences and Engineering |