Machine Learning Diffusion Monte Carlo Energies

Kevin Ryczko, Jaron T. Krogel, Isaac Tamblyn

Research output: Contribution to journalArticlepeer-review

12 Scopus citations

Abstract

We present two machine learning methodologies that are capable of predicting diffusion Monte Carlo (DMC) energies with small data sets (≈60 DMC calculations in total). The first uses voxel deep neural networks (VDNNs) to predict DMC energy densities using Kohn-Sham density functional theory (DFT) electron densities as input. The second uses kernel ridge regression (KRR) to predict atomic contributions to the DMC total energy using atomic environment vectors as input (we used atom-centered symmetry functions, atomic environment vectors from the ANI models, and smooth overlap of atomic positions). We first compare the methodologies on pristine graphene lattices, where we find that the KRR methodology performs best in comparison to gradient boosted decision trees, random forest, Gaussian process regression, and multilayer perceptrons. In addition, KRR outperforms VDNNs by an order of magnitude. Afterward, we study the generalizability of KRR to predict the energy barrier associated with a Stone-Wales defect. Lastly, we move from 2D to 3D materials and use KRR to predict total energies of liquid water. In all cases, we find that the KRR models are more accurate than Kohn-Sham DFT and all mean absolute errors are less than chemical accuracy.

Original languageEnglish
Pages (from-to)7695-7701
Number of pages7
JournalJournal of Chemical Theory and Computation
Volume18
Issue number12
DOIs
StatePublished - Dec 13 2022

Funding

The authors acknowledge Compute Canada, the Vector Institute for Artificial Intelligence, and the National Energy Research Scientific Computing Center for computational resources. K.R. and I.T. acknowledge the National Sciences and Engineering Council of Canada for funding. Work performed by J.K. (mentorship) was supported by the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.

Fingerprint

Dive into the research topics of 'Machine Learning Diffusion Monte Carlo Energies'. Together they form a unique fingerprint.

Cite this