Abstract
In this study, an artificial intelligence based real-time prediction and control model to optimize condenser water temperature and discharge air temperature (DAT) set-points in water-cooled air handling unit (AHU) system has been developed. EnergyPlus-MATLAB co-simulation has been conducted to analyze the developed model's effectiveness. To develop artificial neural networks (ANN) model, embedded neural network objects in MATLAB was utilized. The developed model could decide an optimal temperature set-points based on outdoor air wet-bulb temperature to reflect the Korean climate context. As a result, the developed ANN prediction model showed the predictive performance of Cv(RMSE) of approximately 21%. Compared to the conventional fixed temperature algorithm, which fixes AHU DAT at 14℃ and condenser water temperature at 32℃, the ANN based optimized control showed a 22% total cooling energy reduction. These results show that significant energy savings can be achieved by simultaneously controlling condenser water temperature and AHU DAT set-points considering Korean climatic characteristics using AI technologies such as ANN models.
Original language | English |
---|---|
Article number | 113471 |
Journal | Energy and Buildings |
Volume | 297 |
DOIs | |
State | Published - Oct 15 2023 |
Funding
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2022R1A2C2006469). This work was supported by a Korea University Grant (No. K2220941).
Funders | Funder number |
---|---|
Korea University | K2220941 |
Ministry of Science, ICT and Future Planning | 2022R1A2C2006469 |
National Research Foundation of Korea |
Keywords
- AHU (air handling unit) discharge air temperature
- ANN (artificial neural network)
- Co-simulation
- Condenser water temperature
- Cooling energy
- Set-point control