Abstract
Point-of-care screening tools are essential to expedite patient care and decrease reliance on slow diagnostic tools (e.g., microbial cultures) to identify pathogens and their associated antibiotic resistance. Analysis of volatile organic compounds (VOC) emitted from biological media has seen in-creased attention in recent years as a potential non-invasive diagnostic procedure. This work explores the use of solid phase micro-extraction (SPME) and ambient plasma ionization mass spectrometry (MS) to rapidly acquire VOC signatures of bacteria and fungi. The MS spectrum of each pathogen goes through a preprocessing and feature extraction pipeline. Various supervised and unsupervised machine learning (ML) classification algorithms are trained and evaluated on the extracted feature set. These are able to classify the type of pathogen as bacteria or fungi with high accuracy, while marked progress is also made in identifying specific strains of bacteria. This study presents a new approach for the identification of pathogens from VOC signatures collected using SPME and ambient ionization MS by training classifiers on just a few samples of data. This ambient plasma ionization and ML approach is robust, rapid, precise, and can potentially be used as a non-invasive clinical diagnostic tool for point-of-care applications.
Original language | English |
---|---|
Article number | 232 |
Journal | Metabolites |
Volume | 12 |
Issue number | 3 |
DOIs | |
State | Published - Mar 2022 |
Externally published | Yes |
Funding
R Kamaleswaran was supported by the National Institutes of Health under Award Numbers R01GM139967 and UL1TR002378.
Funders | Funder number |
---|---|
National Institutes of Health | R01GM139967, UL1TR002378 |
Keywords
- Ambient plasma ionization
- DART-MS
- Imbalanced learning
- K-means clustering
- Machine learning classification algorithms
- Pathogen identification
- Point-of-care devices
- Solid phase micro-extraction
- VOC