M-STAR: Magnetism second target advanced reflectometer at the Spallation Neutron Source

Valeria Lauter, Kang Wang, Tim Mewes, Artur Glavic, Boris Toperverg, Mahshid Ahmadi, Badih Assaf, Bin Hu, Mingda Li, Xinyu Liu, Yaohua Liu, Jagadeesh Moodera, Leonid Rokhinson, Deepak Singh, Nian Sun

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

M-STAR is a next generation polarized neutron reflectometer with advanced capabilities. A new focusing guide concept is optimized for samples with dimensions down to a millimeter range. A proposed hybrid pulse-skipping chopper will enable experiments at constant geometry at one incident angle in a broad range of wavevector transfer Q up to 0.3 A-1 for specular, off-specular, and GISANS measurements. M-STAR will empower nanoscience and spintronics studies routinely on small samples (∼2 × 2 mm2) and of atomic-scale thickness using versatile experimental conditions of magnetic and/or electric fields, light, and temperature applied in situ to novel complex device-like nanosystems with multiple buried interfaces. M-STAR will enable improved grazing incidence diffraction measurements, as a surface-sensitive depth-resolved probe of, e.g., the out-of-plane component of atomic magnetic moments in ferromagnetic, antiferromagnetic, and more complex structures as well as in-plane atomic-scale structures inaccessible with contemporary diffractometry and reflectometry. New horizons will be opened by the development of an option to probe near-surface dynamics with inelastic grazing incidence scattering in the time-of-flight mode. These novel options in combination with ideally matched parameters of the second target station will place M-STAR in the world's leading position for high resolution polarized reflectometry.

Original languageEnglish
Article number103903
JournalReview of Scientific Instruments
Volume93
Issue number10
DOIs
StatePublished - Oct 1 2022

Funding

We thank Cristina Boone, William Turner, and Scott Dixon for their attention and help during the development of the beamline layout and its key components and Bill Mchargue for useful discussions on the choppers. We thank Claudia Mewes, Rana Ashkar, and Kumar Rajeev for their input during the initial stage of the project. This research used resources at the SNS and the HFIR, which are DOE Office of Science User Facilities operated by the Oak Ridge National Laboratory (ORNL). This research used resources of the Spallation Neutron Source Second Target Station Project at ORNL. ORNL is managed by UT-Battelle LLC for DOE’s Office of Science, the single largest supporter of basic research in the physical sciences in the United States. This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

Fingerprint

Dive into the research topics of 'M-STAR: Magnetism second target advanced reflectometer at the Spallation Neutron Source'. Together they form a unique fingerprint.

Cite this