TY - JOUR
T1 - Low temperature aging behavior of type 308 stainless steel weld metal
AU - Vitek, J. M.
AU - David, S. A.
AU - Alexander, D. J.
AU - Keiser, J. R.
AU - Nanstad, R. K.
PY - 1991/4
Y1 - 1991/4
N2 - The aging behavior of welded type 308 stainless steel was evaluated by mechanical property testing and microstructural examination. Aging was carried out at 475°C for up to 20,000 h. The initial material consisted of austenite with approximately 10% ferrite. Upon aging, the ferrite hardness increased up to 100%. This hardening was accompanied by a noticeable increase in the ductile-brittle transition temperature and a drop in the upper shelf energy, as measured by Charpy impact tests, and a degradation in fracture toughness, as determined by J-integral test. Tensile properties did not change significantly with aging. Microstructural analysis indicated that the ferrite decomposed spinodally into iron-rich α and chromium-enriched α′. In addition, abundant precipitation of nickel- and silicon-rich G-phase was found within the ferrite and M23C6 carbide formed along the austenite-ferrite interface. These effects are similar to the aging behavior of cast stainless steels. Occasionally, large G-phase or α precipitates were also found along the austenite-ferrite interface after aging more than 1000 h. After comparison of the mechanical property changes with the microstructural features, it was concluded that both spinodal decomposition as well as G-phase formation contribute to ferrite hardening. Spinodal decomposition results in embrittlement of the weld insofar as the ductile-brittle transition temperature is raised. G-phase formation and carbide precipitation are associated with a degradation in the ductile fracture properties, as shown by a drop in the upper shelf energy and a decrease in the fracture toughness.
AB - The aging behavior of welded type 308 stainless steel was evaluated by mechanical property testing and microstructural examination. Aging was carried out at 475°C for up to 20,000 h. The initial material consisted of austenite with approximately 10% ferrite. Upon aging, the ferrite hardness increased up to 100%. This hardening was accompanied by a noticeable increase in the ductile-brittle transition temperature and a drop in the upper shelf energy, as measured by Charpy impact tests, and a degradation in fracture toughness, as determined by J-integral test. Tensile properties did not change significantly with aging. Microstructural analysis indicated that the ferrite decomposed spinodally into iron-rich α and chromium-enriched α′. In addition, abundant precipitation of nickel- and silicon-rich G-phase was found within the ferrite and M23C6 carbide formed along the austenite-ferrite interface. These effects are similar to the aging behavior of cast stainless steels. Occasionally, large G-phase or α precipitates were also found along the austenite-ferrite interface after aging more than 1000 h. After comparison of the mechanical property changes with the microstructural features, it was concluded that both spinodal decomposition as well as G-phase formation contribute to ferrite hardening. Spinodal decomposition results in embrittlement of the weld insofar as the ductile-brittle transition temperature is raised. G-phase formation and carbide precipitation are associated with a degradation in the ductile fracture properties, as shown by a drop in the upper shelf energy and a decrease in the fracture toughness.
UR - http://www.scopus.com/inward/record.url?scp=0026141468&partnerID=8YFLogxK
U2 - 10.1016/0956-7151(91)90118-K
DO - 10.1016/0956-7151(91)90118-K
M3 - Article
AN - SCOPUS:0026141468
SN - 0956-7151
VL - 39
SP - 503
EP - 516
JO - Acta Metallurgica Et Materialia
JF - Acta Metallurgica Et Materialia
IS - 4
ER -