Low-memory, discrete ordinates, discontinuous Galerkin methods for radiative transport

Zheng Sun, Cory D. Hauck

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

The discrete ordinates discontinuous Galerkin (SN-DG) method is a well-established and practical approach for solving the radiative transport equation. In this paper, we study a low-memory variation of the upwind SN-DG method. The proposed method uses a smaller finite element space that is constructed by coupling spatial unknowns across collocation angles, thereby yielding an approximation with fewer degrees of freedom than the standard method. Like the original SNDG method, the low-memory variation still preserves the asymptotic diffusion limit and maintains the characteristic structure needed for mesh sweeping algorithms. While we observe second-order convergence in the scattering dominated, diffusive regime, the low-memory method is in general only first-order accurate. To address this issue, we use upwind reconstruction to recover second-order accuracy. For both methods, numerical procedures based on upwind sweeps are proposed to reduce the system dimension in the underlying Krylov solver strategy.

Original languageEnglish
Pages (from-to)B869-B893
JournalSIAM Journal on Scientific Computing
Volume42
Issue number4
DOIs
StatePublished - 2020

Keywords

  • Diffusion limit
  • Discontinuous Galerkin
  • Discrete ordinates
  • Radiative transport

Fingerprint

Dive into the research topics of 'Low-memory, discrete ordinates, discontinuous Galerkin methods for radiative transport'. Together they form a unique fingerprint.

Cite this