Abstract
The excitation of surface-phonon-polariton (SPhP) modes in polar dielectric crystals and the associated new developments in the field of SPhPs are reviewed. The emphasis of this work is on providing an understanding of the general phenomenon, including the origin of the Reststrahlen band, the role that optical phonons in polar dielectric lattices play in supporting sub-diffraction-limited modes and how the relatively long optical phonon lifetimes can lead to the low optical losses observed within these materials. Based on this overview, the achievements attained to date and the potential technological advantages of these materials are discussed for localized modes in nanostructures, propagating modes on surfaces and in waveguides and novel metamaterial designs, with the goal of realizing low-loss nanophotonics and metamaterials in the mid-infrared to terahertz spectral ranges.
Original language | English |
---|---|
Pages (from-to) | 44-68 |
Number of pages | 25 |
Journal | Nanophotonics |
Volume | 4 |
Issue number | 1 |
DOIs | |
State | Published - Jan 1 2015 |
Externally published | Yes |
Funding
Acknowledgments: Support for all NRL authors was provided by the NRL Nanoscience Institute via Office of Naval Research funding. J.D.C. would like to thank Prof. Alexander Grigorenko of the University of Manchester for his helpful advice in tailoring this manuscript to a broader audience. The authors would like to thank Prof. Alexan-dra Boltasseva, Mr. Jongbum Kim and Mr. Urcan Guler for sharing the optical constants of TiN, AZO, GZO and ITO for use in this review. We further thank Mr. Edward Sachet and Prof. Jon-Paul Maria of North Carolina State University for providing the optical constants of n-CdO for use in this review. We would also like to thank Dr. James Long, Joseph Tischler, Chase Ellis and Alex Boosalis for efforts in extracting optical constants of various SiC and III-N materials available at NRL. J.D.C. would like to thank Prof. Kostya Novoselov for access to his laboratory and office space at the University of Manchester where work on this review was undertaken and for access to hexagonal boron nitride materials for which the reported optical constants are derived. The authors also thank Dr. Kathryn Wahl and Jeffrey Owrutsky for access to the FTIR microscope used for the spectra provided in Figure 2A. L.L. acknowledges the financial support of the NRC-NRL Postdoctoral Fellowship. S.M. and V.G. acknowledge support from EPSRC and Leverhulme Trust.
Keywords
- Reststrahlen
- infrared
- metamaterial
- nanophotonic
- phonon polariton
- plasmonics
- polar dielectric
- terahertz