Abstract
Nanoparticles of several oxides have been synthesized using reverse micelle process. Microemulsions containing n-octane as the oil phase, cetyl trimethylammonium bromide and 1-butanol as surfactants, and an aqueous solution of metal nitrates and sodium hydroxide were used as the reaction medium. The nanoparticles obtained were characterized using differential thermal analysis, x-ray diffraction, and transmission electron microscopy. The application of these particles for flux-pinning enhancements has been studied.
Original language | English |
---|---|
Pages (from-to) | 3668-3671 |
Number of pages | 4 |
Journal | IEEE Transactions on Applied Superconductivity |
Volume | 17 |
Issue number | 2 |
DOIs | |
State | Published - Jun 2007 |
Funding
Manuscript received August 22, 2006. Research supported by the Department of Energy, Office of Electricity Delivery and Energy Reliability (OE). This research was performed at the Oak Ridge National Laboratory, managed by UT-Battelle, LLC for the USDOE under contract DE-AC05-00OR22725.
Keywords
- Flux-pinning
- High temperature superconductors
- Oxide nanoparticles
- Reverse micelle process