TY - GEN
T1 - Loss comparison between SiC, hybrid Si/SiC, and Si devices in direct AC/AC converters
AU - Moghe, Rohit
AU - Kandula, Rajendra P.
AU - Iyer, Amrit
AU - Divan, Deepak
PY - 2012
Y1 - 2012
N2 - Direct AC/AC topologies for AC-to-AC power conversion benefit from the absence of DC-link capacitors and therefore high reliability as compared to traditional VSI-based topologies. Moreover, it is shown in this paper that the direct AC/AC converters also promise to provide higher efficiency than their voltage source inverter (VSI) based back-to-back (BTB) counterparts due to a dramatic reduction in switching losses. These factors allow the direct AC/AC converter to switch faster, and maintain much smaller size and lower cost relative to their competition. This paper compares the performance of three different device types (SiC, hybrid Si/SiC and Si) for use in a direct AC/AC converter. It is conjectured that traditional datasheets lack the level of detail needed for designing highly efficient direct AC/AC converters. Therefore, comprehensive loss models for all the devices are formed through a rigorous device characterization under varying (V, I, T) operating conditions. Finally, a loss comparison is performed to identify the most suitable device (among those characterized) for a specific 13 kV / 1 MW highly efficient direct AC/AC power flow controller.
AB - Direct AC/AC topologies for AC-to-AC power conversion benefit from the absence of DC-link capacitors and therefore high reliability as compared to traditional VSI-based topologies. Moreover, it is shown in this paper that the direct AC/AC converters also promise to provide higher efficiency than their voltage source inverter (VSI) based back-to-back (BTB) counterparts due to a dramatic reduction in switching losses. These factors allow the direct AC/AC converter to switch faster, and maintain much smaller size and lower cost relative to their competition. This paper compares the performance of three different device types (SiC, hybrid Si/SiC and Si) for use in a direct AC/AC converter. It is conjectured that traditional datasheets lack the level of detail needed for designing highly efficient direct AC/AC converters. Therefore, comprehensive loss models for all the devices are formed through a rigorous device characterization under varying (V, I, T) operating conditions. Finally, a loss comparison is performed to identify the most suitable device (among those characterized) for a specific 13 kV / 1 MW highly efficient direct AC/AC power flow controller.
UR - http://www.scopus.com/inward/record.url?scp=84870906655&partnerID=8YFLogxK
U2 - 10.1109/ECCE.2012.6342284
DO - 10.1109/ECCE.2012.6342284
M3 - Conference contribution
AN - SCOPUS:84870906655
SN - 9781467308014
T3 - 2012 IEEE Energy Conversion Congress and Exposition, ECCE 2012
SP - 3848
EP - 3855
BT - 2012 IEEE Energy Conversion Congress and Exposition, ECCE 2012
T2 - 4th Annual IEEE Energy Conversion Congress and Exposition, ECCE 2012
Y2 - 15 September 2012 through 20 September 2012
ER -