Abstract
Significant progress in obtaining high performance discharges lasting many energy confinement times in the DIII-D tokamak has been realized in recent experimental campaigns. Normalized performance ∼10 has been sustained for more than 5>E with qmin > 1.5. (The normalized performance is measured by the product βNH89, indicating the proximity to the conventional β limits and energy confinement quality, respectively.) These H mode discharges have an ELMing edge and β < 5%. The limit to increasing β is a resistive wall mode, rather than the tearing modes as previously observed. Confinement remains good despite qmin > 1. The global parameters were chosen to optimize the potential for fully non-inductive current sustainment at high performance, which is a key program goal for the DIII-D facility. Measurement of the current density and loop voltage profiles indicate that ≈75% of the current in the present discharges is sustained non-inductively. The remaining ohmic current is localized near the half-radius. The electron cyclotron heating system is being upgraded to replace this remaining current with ECCD. Density and β control, which are essential for operating advanced tokamak discharges, were demonstrated in ELMing H mode discharges with βNH89 ≈ 7 for up to 6.3 s or ≈34τE. These discharges appear to have stationary current profiles with qmin ≈ 1.05 in agreement with the current profile relaxation time ≈1.8 s.
Original language | English |
---|---|
Pages (from-to) | 1585-1599 |
Number of pages | 15 |
Journal | Nuclear Fusion |
Volume | 41 |
Issue number | 11 |
DOIs | |
State | Published - Nov 2001 |