Abstract
Grain boundary properties are known to affect the intergranular stress corrosion cracking (IGSCC) and irradiation assisted stress corrosion cracking behavior of austenitic alloys in high temperature water. However, it is only recently that sufficient evidence has accumulated to show that the disposition of deformation in and near the grain boundary plays a key role in intergranular cracking. Grain boundaries that can transmit strain to adjacent grains can relieve stresses without undergoing localized deformation. Grain boundaries that cannot transmit strain will either experience high stresses or high strains. High stresses can lead to wedge-type cracking and sliding can lead to rupture of the protective oxide film, These processes are also applicable to irradiated materials in which the deformation can become highly localized in the form of dislocation channels and deformation twins. These deformation bands conduct tremendous amounts of strain to the grain boundaries. The capability of a boundary to transmit strain to a neighboring grain will determine its propensity for cracking, analogous to that in unirradiated metals. Thus, IGSCC in unirradiated materials and IASCC in irradiated materials are governed by the same local processes of stress and strain accommodation at the boundary.
Original language | English |
---|---|
Pages (from-to) | 885-902 |
Number of pages | 18 |
Journal | Key Engineering Materials |
Volume | 261-263 |
Issue number | II |
DOIs | |
State | Published - 2004 |
Externally published | Yes |
Event | Advances in Fracture and Failure Prevention: Proceedings of the Fifth International Conference on Fracture and Strength of Solids (FEOFS2003): Second International Conference on Physics and Chemistry of Fracture and Failure Prevention (2nd ICPCF) - Sendai, Japan Duration: Oct 20 2003 → Oct 22 2003 |
Keywords
- Austenitic alloys
- Deformation
- Grain boundary
- IGSCC
- Stacking fault energy
- Strain