Lithium carbonate-promoted mixed rare earth oxides as a generalized strategy for oxidative coupling of methane with exceptional yields

Kun Zhao, Yunfei Gao, Xijun Wang, Bar Mosevitzky Lis, Junchen Liu, Baitang Jin, Jacob Smith, Chuande Huang, Wenpei Gao, Xiaodong Wang, Xin Wang, Anqing Zheng, Zhen Huang, Jianli Hu, Reinhard Schömacker, Israel E. Wachs, Fanxing Li

Research output: Contribution to journalArticlepeer-review

12 Scopus citations

Abstract

The oxidative coupling of methane to higher hydrocarbons offers a promising autothermal approach for direct methane conversion, but its progress has been hindered by yield limitations, high temperature requirements, and performance penalties at practical methane partial pressures (~1 atm). In this study, we report a class of Li2CO3-coated mixed rare earth oxides as highly effective redox catalysts for oxidative coupling of methane under a chemical looping scheme. This catalyst achieves a single-pass C2+ yield up to 30.6%, demonstrating stable performance at 700 °C and methane partial pressures up to 1.4 atm. In-situ characterizations and quantum chemistry calculations provide insights into the distinct roles of the mixed oxide core and Li2CO3 shell, as well as the interplay between the Pr oxidation state and active peroxide formation upon Li2CO3 coating. Furthermore, we establish a generalized correlation between Pr4+ content in the mixed lanthanide oxide and hydrocarbons yield, offering a valuable optimization strategy for this class of oxidative coupling of methane redox catalysts.

Original languageEnglish
Article number7749
JournalNature Communications
Volume14
Issue number1
DOIs
StatePublished - Dec 2023
Externally publishedYes

Fingerprint

Dive into the research topics of 'Lithium carbonate-promoted mixed rare earth oxides as a generalized strategy for oxidative coupling of methane with exceptional yields'. Together they form a unique fingerprint.

Cite this