TY - JOUR
T1 - Lineage-determining transcription factor-driven promoters regulate cell type-specific macrophage gene expression
AU - Nagy, Gergely
AU - Bojcsuk, Dora
AU - Tzerpos, Petros
AU - Cseh, Timea
AU - Nagy, Laszlo
N1 - Publisher Copyright:
© The Author(s) 2024.
PY - 2024/5/8
Y1 - 2024/5/8
N2 - Mammalian promoters consist of multifarious elements, which make them unique and support the selection of the proper transcript variants required under diverse conditions in distinct cell types. However, their direct DNA-transcription factor (TF) interactions are mostly unidentified. Murine bone marrow-derived macrophages (BMDMs) are a widely used model for studying gene expression regulation. Thus, this model serves as a rich source of various next-generation sequencing data sets, including a large number of TF cistromes. By processing and integrating the available cistromic, epigenomic and transcriptomic data from BMDMs, we characterized the macrophage-specific direct DNA-TF interactions, with a particular emphasis on those specific for promoters. Whilst active promoters are enriched for certain types of typically methylatable elements, more than half of them contain non-methylatable and prototypically promoter-distal elements. In addition, circa 14% of promoters—including that of Csf1r—are composed exclusively of ‘distal’ elements that provide cell type-specific gene regulation by specialized TFs. Similar to CG-rich promoters, these also contain methylatable CG sites that are demethylated in a significant portion and show high polymerase activity. We conclude that this unusual class of promoters regulates cell type-specific gene expression in macrophages, and such a mechanism might exist in other cell types too.
AB - Mammalian promoters consist of multifarious elements, which make them unique and support the selection of the proper transcript variants required under diverse conditions in distinct cell types. However, their direct DNA-transcription factor (TF) interactions are mostly unidentified. Murine bone marrow-derived macrophages (BMDMs) are a widely used model for studying gene expression regulation. Thus, this model serves as a rich source of various next-generation sequencing data sets, including a large number of TF cistromes. By processing and integrating the available cistromic, epigenomic and transcriptomic data from BMDMs, we characterized the macrophage-specific direct DNA-TF interactions, with a particular emphasis on those specific for promoters. Whilst active promoters are enriched for certain types of typically methylatable elements, more than half of them contain non-methylatable and prototypically promoter-distal elements. In addition, circa 14% of promoters—including that of Csf1r—are composed exclusively of ‘distal’ elements that provide cell type-specific gene regulation by specialized TFs. Similar to CG-rich promoters, these also contain methylatable CG sites that are demethylated in a significant portion and show high polymerase activity. We conclude that this unusual class of promoters regulates cell type-specific gene expression in macrophages, and such a mechanism might exist in other cell types too.
UR - http://www.scopus.com/inward/record.url?scp=85190768639&partnerID=8YFLogxK
U2 - 10.1093/nar/gkae088
DO - 10.1093/nar/gkae088
M3 - Article
C2 - 38348998
AN - SCOPUS:85190768639
SN - 0305-1048
VL - 52
SP - 4234
EP - 4256
JO - Nucleic Acids Research
JF - Nucleic Acids Research
IS - 8
ER -