Abstract
Many-body interactions between carriers lie at the heart of correlated physics. The ability to tune such interactions would allow the possibility to access and control complex electronic phase diagrams. Recently, two-dimensional moiré superlattices have emerged as a promising platform for quantum engineering such phenomena1–3. The power of the moiré system lies in the high tunability of its physical parameters by adjusting the layer twist angle1–3, electrical field4–6, moiré carrier filling7–11 and interlayer coupling12. Here we report that optical excitation can highly tune the spin–spin interactions between moiré-trapped carriers, resulting in ferromagnetic order in WS2 /WSe2 moiré superlattices. Near the filling factor of −1/3 (that is, one hole per three moiré unit cells), as the excitation power at the exciton resonance increases, a well-developed hysteresis loop emerges in the reflective magnetic circular dichroism signal as a function of magnetic field, a hallmark of ferromagnetism. The hysteresis loop persists down to charge neutrality, and its shape evolves as the moiré superlattice is gradually filled, indicating changes of magnetic ground state properties. The observed phenomenon points to a mechanism in which itinerant photoexcited excitons mediate exchange coupling between moiré-trapped holes. This exciton-mediated interaction can be of longer range than direct coupling between moiré-trapped holes9, and thus magnetic order arises even in the dilute hole regime. This discovery adds a dynamic tuning knob to the rich many-body Hamiltonian of moiré quantum matter13–19.
Original language | English |
---|---|
Pages (from-to) | 468-473 |
Number of pages | 6 |
Journal | Nature |
Volume | 604 |
Issue number | 7906 |
DOIs | |
State | Published - Apr 21 2022 |
Funding
We thank B. Spivak, T. Cao, J.-H. Chu, D. Cobden, M. Yankowitz, C. Dean and A. N. Pasupathy for helpful discussions. Research on the observation of ferromagnetism near \u22121/3 moir\u00E9 superlattice filling is primarily supported as part of Programmable Quantum Materials, an Energy Frontier Research Center funded by the US Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), under award DE-SC0019443. Optically induced magnetism of dilute electron/hole gas is mainly supported by the DOE BES under award DE-SC0018171. Sample fabrication and piezoresponse force microscopy characterization are partially supported by the ARO MURI programme (grant no. W911NF-18-1-0431). Monte carlo simulation by D.X. was partially supported by the US Department of Energy, Office of Science, National Quantum Information Science Research Centers, Co-design Center for Quantum Advantage (C2QA). The AFM-related measurements were performed using instrumentation supported by the US National Science Foundation through the UW Molecular Engineering Materials Center, a Materials Research Science and Engineering Center (DMR-1719797). W.Y. and C.X. acknowledge support by the Croucher Foundation (Croucher Senior Research Fellowship) and the University Grant Committee/Research Grants Council of Hong Kong SAR (AoE/P-701/20). Bulk WSe crystal growth and characterization by J.Y. is supported by the US DOE, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. K.W. and T.T. acknowledge support from the Elemental Strategy Initiative conducted by the MEXT, Japan, grant number JPMXP0112101001, JSPS KAKENHI grant number JP20H00354 and CREST (JPMJCR15F3), JST. X.X. acknowledges support from the State of Washington funded Clean Energy Institute and from the Boeing Distinguished Professorship in Physics. 2