Leveraging conventional control to improve performance of systems using reinforcement learning

Gerald Eaglin, Joshua Vaughan

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

While many model-based methods have been proposed for optimal control, it is often difficult to generate model-based optimal controllers for nonlinear systems. One model-free method to solve for optimal control policies is reinforcement learning. Reinforcement learning iteratively trains an agent to optimize a reward function. However, agents often perform poorly at the beginning of training and require a large number of trials to converge to a successful policy. A method is proposed to incorporate domain knowledge of dynamics and control into the controllers using reinforcement learning to reduce the training time needed. Simulations are presented to compare the performance of agents utilizing domain knowledge to those that do not use domain knowledge. The results show that the agents with domain knowledge can accomplish the desired task with less training time than those without domain knowledge.

Original languageEnglish
Title of host publicationIntelligent Transportation/Vehicles; Manufacturing; Mechatronics; Engine/After-Treatment Systems; Soft Actuators/Manipulators; Modeling/Validation; Motion/Vibration Control Applications; Multi-Agent/Networked Systems; Path Planning/Motion Control; Renewable/Smart Energy Systems; Security/Privacy of Cyber-Physical Systems; Sensors/Actuators; Tracking Control Systems; Unmanned Ground/Aerial Vehicles; Vehicle Dynamics, Estimation, Control; Vibration/Control Systems; Vibrations
PublisherAmerican Society of Mechanical Engineers
ISBN (Electronic)9780791884287
DOIs
StatePublished - 2020
Externally publishedYes
EventASME 2020 Dynamic Systems and Control Conference, DSCC 2020 - Virtual, Online
Duration: Oct 5 2020Oct 7 2020

Publication series

NameASME 2020 Dynamic Systems and Control Conference, DSCC 2020
Volume2

Conference

ConferenceASME 2020 Dynamic Systems and Control Conference, DSCC 2020
CityVirtual, Online
Period10/5/2010/7/20

Funding

This work was supported by the Louisiana Board of Regents Support Fund Fellowship.

FundersFunder number
Louisiana Board of Regents

    Fingerprint

    Dive into the research topics of 'Leveraging conventional control to improve performance of systems using reinforcement learning'. Together they form a unique fingerprint.

    Cite this