Abstract
A paradigm shift in the traditional sequential design approaches is critically essential to create application-specific hierarchical and multifunctional materials with superior long-term performance for next-generation energy technologies involving extreme environments. In the current work, we aim to leverage the flexibility and geometric/compositional complexity offered by additive manufacturing to demonstrate this new approach by co-designing a compositionally graded Ni-based alloy for molten salts\sCO2 heat exchangers to enable mitigation of environmental degradation of surfaces exposed to molten halide salts, while simultaneously suppressing the consequent deterioration in mechanical stability. Thermokinetic modeling describing the underlying physics of thermally- and environmentally induced spatiotemporal compositional and microstructural evolution will be employed to predict the parameter space of material deposition processes and precisely identify the required composition gradient. Preliminary corrosion and mechanical testing of the dual material demonstrated the potential of the material to replace existing solid solution strengthened materials for this application.
Original language | English |
---|---|
Title of host publication | Industrial and Cogeneration; Manufacturing Materials and Metallurgy |
Publisher | American Society of Mechanical Engineers (ASME) |
ISBN (Electronic) | 9780791887028 |
DOIs | |
State | Published - 2023 |
Event | ASME Turbo Expo 2023: Turbomachinery Technical Conference and Exposition, GT 2023 - Boston, United States Duration: Jun 26 2023 → Jun 30 2023 |
Publication series
Name | Proceedings of the ASME Turbo Expo |
---|---|
Volume | 8 |
Conference
Conference | ASME Turbo Expo 2023: Turbomachinery Technical Conference and Exposition, GT 2023 |
---|---|
Country/Territory | United States |
City | Boston |
Period | 06/26/23 → 06/30/23 |
Funding
A. Willoughby, B. Johnston, and D. Sulejmanovic assisted with the experimental work at ORNL. T. Lowe and D. Greene are thanked for helping with metallography and microstructural characterization respectively. J.A. Haynes and A. Shyam are thanked for their valuable comments on the paper. This research was sponsored by the sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U. S. Department of Energy. This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).
Keywords
- directed energy deposition
- dual corrosion-resistance
- property grading