Learning to Predict Material Structure from Neutron Scattering Data

Cristina Garcia-Cardona, Ramakrishnan Kannan, Travis Johnston, Thomas Proffen, Katharine Page, Sudip K. Seal

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

13 Scopus citations

Abstract

Understanding structural properties of materials and how they relate to its atomic structure, while extremely challenging, is a key scientific quest that has dominated the landscape of materials research for decades. Neutron and X-ray scattering is a state-of-the-art method to investigate material structure on the atomic scale. Traditional methods of processing neutron scattering data to decipher the structure of target materials have relied on computing scattering patterns using physics-based forward models and comparing them with experimentally gathered scattering profiles within a computationally expensive optimization loop. Here, we report an initial design of a data-driven machine learning pipeline for material structure prediction that is computationally faster (once trained) and potentially more accurate. We describe the architecture of the ML pipeline and a preliminary benchmarking study of shallow machine learning models in terms of their prediction accuracy and limitations. We show that material structure prediction from neutron scattering data using shallow learning models is feasible to within 90% prediction accuracy for certain classes of materials but deeper models are required for more general material structure predictions.

Original languageEnglish
Title of host publicationProceedings - 2019 IEEE International Conference on Big Data, Big Data 2019
EditorsChaitanya Baru, Jun Huan, Latifur Khan, Xiaohua Tony Hu, Ronay Ak, Yuanyuan Tian, Roger Barga, Carlo Zaniolo, Kisung Lee, Yanfang Fanny Ye
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages4490-4497
Number of pages8
ISBN (Electronic)9781728108582
DOIs
StatePublished - Dec 2019
Event2019 IEEE International Conference on Big Data, Big Data 2019 - Los Angeles, United States
Duration: Dec 9 2019Dec 12 2019

Publication series

NameProceedings - 2019 IEEE International Conference on Big Data, Big Data 2019

Conference

Conference2019 IEEE International Conference on Big Data, Big Data 2019
Country/TerritoryUnited States
CityLos Angeles
Period12/9/1912/12/19

Funding

This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan) A portion of this research used resources at the Spallation Neutron Source, a DOE Office of Science User Facility operated by the Oak Ridge National Laboratory. A portion of this research used resources at the Argonne Leadership Computing Facility, a DOE Office of Science User Facility operated by the Argonne National Laboratory. This research was sponsored by ExaLearn, an Exascale Computing Project, DOE.

Fingerprint

Dive into the research topics of 'Learning to Predict Material Structure from Neutron Scattering Data'. Together they form a unique fingerprint.

Cite this