TY - JOUR
T1 - Layer-by-Layer Assembled Oxide Nanoparticle Electrodes with High Transparency, Electrical Conductivity, and Electrochemical Activity by Reducing Organic Linker-Induced Oxygen Vacancies
AU - Cho, Ikjun
AU - Song, Yongkwon
AU - Cheong, Sanghyuk
AU - Kim, Younghoon
AU - Cho, Jinhan
N1 - Publisher Copyright:
© 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
PY - 2020/2/1
Y1 - 2020/2/1
N2 - Solution-processable transparent conducting oxide (TCO) nanoparticle (NP)–based electrodes are limited by their low electrical conductivity, which originates from the low level of oxygen vacancies within NPs and the contact resistance between neighboring NPs. Additionally, these electrodes suffer from the troublesome trade-off between electrical conductivity and optical transmittance and the restricted shape of substrates (i.e., only flat substrates). An oxygen-vacancy-controlled indium tin oxide (ITO) NP-based electrode is introduced using carbon-free molecular linkers with strong chemically reducing properties. Specifically, ITO NPs are layer-by-layer assembled with extremely small hydrazine monohydrate linkers composed of two amine groups, followed by thermal annealing. This approach markedly improves the electrical conductivity of ITO NP-based electrodes by significantly increasing the level of oxygen vacancies and decreasing the interparticle distance (i.e., contact resistance) without sacrificing optical transmittance. The prepared electrodes surpass the optical/electrical performance of TCO NP-based electrodes reported to date. Additionally, the nanostructured ITO NP films can be applied to more complex geometric substrates beyond flat substrates, and furthermore exhibit a prominent electrochemical activity. This approach can provide an important basis for developing a wide range of highly functional transparent conducting electrodes.
AB - Solution-processable transparent conducting oxide (TCO) nanoparticle (NP)–based electrodes are limited by their low electrical conductivity, which originates from the low level of oxygen vacancies within NPs and the contact resistance between neighboring NPs. Additionally, these electrodes suffer from the troublesome trade-off between electrical conductivity and optical transmittance and the restricted shape of substrates (i.e., only flat substrates). An oxygen-vacancy-controlled indium tin oxide (ITO) NP-based electrode is introduced using carbon-free molecular linkers with strong chemically reducing properties. Specifically, ITO NPs are layer-by-layer assembled with extremely small hydrazine monohydrate linkers composed of two amine groups, followed by thermal annealing. This approach markedly improves the electrical conductivity of ITO NP-based electrodes by significantly increasing the level of oxygen vacancies and decreasing the interparticle distance (i.e., contact resistance) without sacrificing optical transmittance. The prepared electrodes surpass the optical/electrical performance of TCO NP-based electrodes reported to date. Additionally, the nanostructured ITO NP films can be applied to more complex geometric substrates beyond flat substrates, and furthermore exhibit a prominent electrochemical activity. This approach can provide an important basis for developing a wide range of highly functional transparent conducting electrodes.
KW - hydrazine linkers
KW - indium tin oxide nanoparticles
KW - layer-by-layer assembly
KW - oxygen vacancy control
KW - transparent conducting oxide electrodes
UR - http://www.scopus.com/inward/record.url?scp=85078658324&partnerID=8YFLogxK
U2 - 10.1002/smll.201906768
DO - 10.1002/smll.201906768
M3 - Article
C2 - 31967718
AN - SCOPUS:85078658324
SN - 1613-6810
VL - 16
JO - Small
JF - Small
IS - 8
M1 - 1906768
ER -