Abstract
The gap between the cost of moving data and the cost of computing continues to grow, making it ever harder to design iterative solvers on extreme-scale architectures. This problem can be alleviated by alternative algorithms that reduce the amount of data movement. We investigate this in the context of Lattice Quantum Chromo dynamics and implement such an alternative solver algorithm, based on domain decomposition, on Intel® Xeon Phi™ co-processor (KNC) clusters. We demonstrate close-to-linear on-chip scaling to all 60 cores of the KNC. With a mix of single- and half-precision the domain-decomposition method sustains 400-500 Gflop/s per chip. Compared to an optimized KNC implementation of a standard solver [1], our full multi-node domain-decomposition solver strong-scales to more nodes and reduces the time-to-solution by a factor of 5.
Original language | English |
---|---|
Article number | 7012993 |
Pages (from-to) | 69-80 |
Number of pages | 12 |
Journal | International Conference for High Performance Computing, Networking, Storage and Analysis, SC |
Volume | 2015-January |
Issue number | January |
DOIs | |
State | Published - Jan 16 2014 |
Externally published | Yes |
Event | International Conference for High Performance Computing, Networking, Storage and Analysis, SC 2014 - New Orleans, United States Duration: Nov 16 2014 → Nov 21 2014 |
Funding
Funders | Funder number |
---|---|
Deutsche Forschungsgemeinschaft | SFB/TR 55 |
Directorate for Computer and Information Science and Engineering | 1238993 |
Keywords
- Domain decomposition
- Intel® Xeon Phi™ coprocessor
- Lattice QCD