Abstract
In pulsed laser deposition, thin film growth is mediated by a laser-generated plasma, whose properties are critical for controlling the film microstructure. The advent of 2D materials has renewed the interest in how this ablation plasma can be used to manipulate the growth and processing of atomically thin systems. For such purpose, a quantitative understanding of the density, charge state, and kinetic energy of plasma constituents is needed at the location where they contribute to materials processes. Here, we study laser-induced plasmas over expansion distances of several centimeters from the ablation target, which is the relevant length scale for materials growth and modification. The study is enabled by a fast implementation of a laser ablation/plasma expansion model using an adaptive Cartesian mesh solver. Simulation outcomes for KrF excimer laser ablation of Cu are compared with Langmuir probe and optical emission spectroscopy measurements. Simulation predictions for the plasma-shielding threshold, the ionization state of species in the plasma, and the kinetic energy of ions, are in good correspondence with experimental data. For laser fluences of 1-4 J cm-2, the plume is dominated by Cu0, with small concentrations of Cu+ and electrons at the expansion front. Higher laser fluences (e.g. 7 J cm-2) lead to a Cu+ -rich plasma, with a fully ionized leading edge where Cu2+ is the dominant species. In both regimes, simulations indicate the presence of a low-density, high-temperature plasma expansion front with a high degree of ionization that may play a significant role in doping, annealing, and kinetically-driven phase transformations in 2D materials.
Original language | English |
---|---|
Article number | 015203 |
Journal | Journal of Physics D: Applied Physics |
Volume | 53 |
Issue number | 1 |
DOIs | |
State | Published - 2020 |
Externally published | Yes |
Funding
S B Harris J H Paiste T J Holdsworth R R Arslanbekov R P Camata S B Harris J H Paiste T J Holdsworth R R Arslanbekov R P Camata Department of Physics, University of Alabama at Birmingham, Birmingham, AL 35294, United States of America CFD Research Corporation, Huntsville, AL 35806, United States of America Author to whom any correspondence should be addressed. S B Harris, J H Paiste, T J Holdsworth, R R Arslanbekov and R P Camata 2019-01-02 2019-10-15 11:14:03 cgi/release: Article released bin/incoming: New from .zip Alabama Space Grant Consortium https://doi.org/10.13039/100005729 NNX15AJ18H NSF EPSCoR RII-Track-1 Cooperative Agreement OIA-1655280 Small Business Innovative Research and Small Business Technology Transfer https://doi.org/10.13039/100007001 DE-SC0015746 yes In pulsed laser deposition, thin film growth is mediated by a laser-generated plasma, whose properties are critical for controlling the film microstructure. The advent of 2D materials has renewed the interest in how this ablation plasma can be used to manipulate the growth and processing of atomically thin systems. For such purpose, a quantitative understanding of the density, charge state, and kinetic energy of plasma constituents is needed at the location where they contribute to materials processes. Here, we study laser-induced plasmas over expansion distances of several centimeters from the ablation target, which is the relevant length scale for materials growth and modification. The study is enabled by a fast implementation of a laser ablation/plasma expansion model using an adaptive Cartesian mesh solver. Simulation outcomes for KrF excimer laser ablation of Cu are compared with Langmuir probe and optical emission spectroscopy measurements. Simulation predictions for the plasma-shielding threshold, the ionization state of species in the plasma, and the kinetic energy of ions, are in good correspondence with experimental data. For laser fluences of 1–4 J cm −2 , the plume is dominated by Cu 0 , with small concentrations of Cu + and electrons at the expansion front. Higher laser fluences (e.g. 7 J cm −2 ) lead to a Cu + -rich plasma, with a fully ionized leading edge where Cu 2+ is the dominant species. In both regimes, simulations indicate the presence of a low-density, high-temperature plasma expansion front with a high degree of ionization that may play a significant role in doping, annealing, and kinetically-driven phase transformations in 2D materials. � 2019 IOP Publishing Ltd [1] Chang J and Chang J P 2017 J. Phys. D: Appl. Phys. 50 253001 10.1088/1361-6463/aa71c7 Chang J and Chang J P J. Phys. D: Appl. Phys. 0022-3727 50 25 253001 2017 [2] Allain J P and Shetty A 2017 J. Phys. D: Appl. Phys. 50 283002 10.1088/1361-6463/aa7506 Allain J P and Shetty A J. Phys. D: Appl. Phys. 0022-3727 50 28 283002 2017 [3] Oehrlein G S and Hamaguchi S 2018 Plasma Sources Sci. Technol. 27 023001 10.1088/1361-6595/aaa86c Oehrlein G S and Hamaguchi S Plasma Sources Sci. Technol. 0963-0252 27 2 023001 2018 [4] Balasubramanyam S, Shirazi M, Bloodgood M, Longfei W, Verheijen M, Vandalon V, Kessels W, Hofmann J and Bol A 2019 Chem. Mater. 31 5104 10.1021/acs.chemmater.9b01008 Balasubramanyam S, Shirazi M, Bloodgood M, Longfei W, Verheijen M, Vandalon V, Kessels W, Hofmann J and Bol A Chem. Mater. 31 2019 5104 [5] Oyedele A et al 2019 J. Am. Chem. Soc. 141 8928 10.1021/jacs.9b02593 Oyedele A et al J. Am. Chem. Soc. 141 2019 8928 [6] Harilal S S, Brumfield B E, Cannon B D and Phillips M C 2016 Anal. Chem. 88 2296 10.1021/acs.analchem.5b04136 Harilal S S, Brumfield B E, Cannon B D and Phillips M C Anal. Chem. 88 2016 2296 [7] Liu H, Ashfold M N, Meehan D N and Wagenaars E 2019 J. Appl. Phys. 125 083304 10.1063/1.5052392 Liu H, Ashfold M N, Meehan D N and Wagenaars E J. Appl. Phys. 125 083304 2019 [8] Liu H, Truscott B S and Ashfold M N R 2016 Sci. Rep. 6 25609 10.1038/srep25609 Liu H, Truscott B S and Ashfold M N R Sci. Rep. 6 2016 25609 [9] Geohegan D 1992 Laser Ablation of Electronic Materials: Basic Mechanisms, Applications ed E Fogarassy and S Lazare (North-Holland: Amsterdam) pp 73–88 Geohegan D ed Fogarassy E and Lazare S Laser Ablation of Electronic Materials: Basic Mechanisms, Applications 1992 73 88 [10] Willmott P R and Huber J R 2000 Rev. Mod. Phys. 72 315 10.1103/RevModPhys.72.315 Willmott P R and Huber J R Rev. Mod. Phys. 0034-6861 72 2000 315 [11] Geohegan D 1994 Pulsed Laser Deposition of Thin Films ed D Chrisey and G Hubler (New York: Wiley-Interscience) pp 115–63 Geohegan D ed Chrisey D and Hubler G Pulsed Laser Deposition of Thin Films 1994 115 163 [12] Palya A, Ranjbar O A, Lin Z and Volkov A N 2018 Appl. Phys. A Mater. Sci. Process. 124 32 10.1007/s00339-017-1447-7 Palya A, Ranjbar O A, Lin Z and Volkov A N Appl. Phys. A Mater. Sci. Process. 124 2018 32 [13] Shabanov S and Gornushkin I 2014 Spectrochim. Acta B 100 147 10.1016/j.sab.2014.08.026 Shabanov S and Gornushkin I Spectrochim. Acta 0584-8547 100 B 2014 147 [14] Cadot G, Thomas K, Best J, Taylor A, Michler J, Axinte D and Billingham J 2018 Carbon 127 349 10.1016/j.carbon.2017.10.030 Cadot G, Thomas K, Best J, Taylor A, Michler J, Axinte D and Billingham J Carbon 127 2018 349 [15] Pathak K and Povitsky A 2008 J. Appl. Phys. 104 113108 10.1063/1.3032937 Pathak K and Povitsky A J. Appl. Phys. 104 113108 2008 [16] Sizyuk T and Hassanein A 2014 Nucl. Fusion 54 023004 10.1088/0029-5515/54/2/023004 Sizyuk T and Hassanein A Nucl. Fusion 0029-5515 54 2 023004 2014 [17] Yadav Y, Patel B, Singh R, Das A, Kaw P and Kumar A 2017 J. Phys. D: Appl. Phys. 50 355201 10.1088/1361-6463/aa7a38 Yadav Y, Patel B, Singh R, Das A, Kaw P and Kumar A J. Phys. D: Appl. Phys. 0022-3727 50 35 355201 2017 [18] Pietanza L, Colonna G, De Giacomo A and Capitelli M 2010 Spectrochim. Acta B 65 616 10.1016/j.sab.2010.03.012 Pietanza L, Colonna G, De Giacomo A and Capitelli M Spectrochim. Acta 0584-8547 65 B 2010 616 [19] Chen Z and Bogaerts A 2005 J. Appl. Phys. 97 063305 10.1063/1.1863419 Chen Z and Bogaerts A J. Appl. Phys. 97 063305 2005 [20] Kelly R and Miotello A 1994 Pulsed Laser Deposition of Thin Films ed D Chrisey and G Hubler (New York: Wiley-Interscience) pp 55–87 Kelly R and Miotello A ed Chrisey D and Hubler G Pulsed Laser Deposition of Thin Films 1994 55 87 [21] Autrique D, Clair G, L’Hermite D, Alexiades V, Bogaerts A and Rethfeld B 2013 J. Appl. Phys. 114 023301 10.1063/1.4812577 Autrique D, Clair G, L’Hermite D, Alexiades V, Bogaerts A and Rethfeld B J. Appl. Phys. 114 023301 2013 [22] Autrique D, Gornushkin I, Alexiades V, Chen Z, Bogaerts A and Rethfeld B 2013 Appl. Phys. Lett. 103 174102 10.1063/1.4826505 Autrique D, Gornushkin I, Alexiades V, Chen Z, Bogaerts A and Rethfeld B Appl. Phys. Lett. 103 174102 2013 [23] Palya A, Ranjbar O A, Lin Z and Volkov A N 2019 Int. J. Heat Mass Transfer 132 1029 10.1016/j.ijheatmasstransfer.2018.12.002 Palya A, Ranjbar O A, Lin Z and Volkov A N Int. J. Heat Mass Transfer 0017-9310 132 2019 1029 [24] Wang Y, Yuan H, Fu Y and Wang Z 2016 Spectrochim. Acta B 126 44 10.1016/j.sab.2016.10.015 Wang Y, Yuan H, Fu Y and Wang Z Spectrochim. Acta 0584-8547 126 B 2016 44 [25] Oumeziane A A, Liani B and Parisse J D 2016 Plasma Chem. Plasma Process. 36 711 10.1007/s11090-015-9688-8 Oumeziane A A, Liani B and Parisse J D Plasma Chem. Plasma Process. 0272-4324 36 2016 711 [26] Abdellatif G and Imam H 2002 Spectrochim. Acta B 57 1155 10.1016/S0584-8547(02)00057-5 Abdellatif G and Imam H Spectrochim. Acta 0584-8547 57 B 2002 1155 [27] Spitzer L 2006 Physics of Fully Ionized Gases (New York: Dover) p 148 Spitzer L Physics of Fully Ionized Gases 2006 148 [28] Zel’dovich Y and Raizer Y 2002 Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (New York: Dover) pp 192–5 Zel’dovich Y and Raizer Y Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena 2002 192 195 [29] Root R 1989 Laser-Induced Plasmas, Applications ed L Radziemski and D Cremers (New York: Marcel Dekker) pp 69–103 Root R ed Radziemski L and Cremers D Laser-Induced Plasmas, Applications 1989 69 103 [30] Doggett B and Lunney J 2009 J. Appl. Phys. 105 033306 10.1063/1.3056131 Doggett B and Lunney J J. Appl. Phys. 105 033306 2009 [31] Weaver I, Martin G, Graham W, Morrow T and Lewis C 1999 Rev. Sci. Instrum. 70 1801 10.1063/1.1149672 Weaver I, Martin G, Graham W, Morrow T and Lewis C Rev. Sci. Instrum. 70 1999 1801 [32] Mao X and Russo R 1997 Appl. Phys. A 64 1 10.1007/s003390050437 Mao X and Russo R Appl. Phys. 1432-0630 64 A 1997 1 [33] Kramida A, Ralchenko Yu, Reader J and NIST ASD Team 2018 NIST Atomic Spectra Database (ver. 5.6.1) (https://physics.nist.gov/asd) Kramida A, Ralchenko Yu, Reader J and NIST ASD Team NIST Atomic Spectra Database (ver. 5.6.1) 2018 [34] Kumaki M, Steski D, Ikeda S, Kanesue T, Okamura M and Washio M 2016 Rev. Sci. Instrum. 87 02A921 10.1063/1.4939781 Kumaki M, Steski D, Ikeda S, Kanesue T, Okamura M and Washio M Rev. Sci. Instrum. 87 02A921 2016 [35] Torrisi L, Gammino S, Ando L, Nassisi V, Doria D and Perdone A 2003 Appl. Surf. Sci. 210 262 10.1016/S0169-4332(02)01467-8 Torrisi L, Gammino S, Ando L, Nassisi V, Doria D and Perdone A Appl. Surf. Sci. 0169-4332 210 2003 262 [36] Ilyas B, Dogar A, Ullah S and Qayyum A 2001 J. Phys. D: Appl. Phys. 44 295202 10.1088/0022-3727/44/29/295202 Ilyas B, Dogar A, Ullah S and Qayyum A J. Phys. D: Appl. Phys. 44 295202 2001 [37] Franghiadakis Y, Fotakis C and Tzanetakis P 1999 Appl. Phys. A 68 391 10.1007/s003390050911 Franghiadakis Y, Fotakis C and Tzanetakis P Appl. Phys. 1432-0630 68 A 1999 391 [38] Sibold D and Urbassek H 1991 Phys. Rev. A 43 6722 10.1103/PhysRevA.43.6722 Sibold D and Urbassek H Phys. Rev. 43 A 1991 6722 [39] Garrelie F, Champeaux C and Catherinot A 1999 Appl. Phys. A 69 45 10.1007/s003390050969 Garrelie F, Champeaux C and Catherinot A Appl. Phys. 1432-0630 69 A 1999 45 [40] Chen Z, Bleiner D and Bogaerts A 2006 J. Appl. Phys. 99 063304 10.1063/1.2182078 Chen Z, Bleiner D and Bogaerts A J. Appl. Phys. 99 063304 2006 [41] Clair G and L’Hermite D 2011 J. Appl. Phys. 110 083307 10.1063/1.3651497 Clair G and L’Hermite D J. Appl. Phys. 110 083307 2011
Funders | Funder number |
---|---|
National Science Foundation | 1655280 |
Alabama Space Grant Consortium | https://doi.org/10.13039/100005729 NNX15AJ18H NSF EPSCoR |
Kansas NSF EPSCoR | DE-SC0015746 |
Keywords
- 2D materials
- diagnostics
- laser ablation
- laser plasma simulation
- plasma assisted processing
- plasma processing of 2D materials
- pulsed laser deposition